Derivation of Langevin dynamics in a nonzero background flow field
Dobson, Matthew ; Legoll, Frédéric ; Lelièvre, Tony ; Stoltz, Gabriel
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013), p. 1583-1626 / Harvested from Numdam

We propose a derivation of a nonequilibrium Langevin dynamics for a large particle immersed in a background flow field. A single large particle is placed in an ideal gas heat bath composed of point particles that are distributed consistently with the background flow field and that interact with the large particle through elastic collisions. In the limit of small bath atom mass, the large particle dynamics converges in law to a stochastic dynamics. This derivation follows the ideas of [P. Calderoni, D. Dürr and S. Kusuoka, J. Stat. Phys. 55 (1989) 649-693. D. Dürr, S. Goldstein and J. Lebowitz, Z. Wahrscheinlichkeit 62 (1983) 427-448. D. Dürr, S. Goldstein and J.L. Lebowitz. Comm. Math. Phys. 78 (1981) 507-530.] and provides extensions to handle the nonzero background flow. The derived nonequilibrium Langevin dynamics is similar to the dynamics in [M. McPhie, P. Daivis, I. Snook, J. Ennis and D. Evans, Phys. A 299 (2001) 412-426]. Some numerical experiments illustrate the use of the obtained dynamic to simulate homogeneous liquid materials under shear flow.

Publié le : 2013-01-01
DOI : https://doi.org/10.1051/m2an/2013077
Classification:  82C05,  82C31
@article{M2AN_2013__47_6_1583_0,
     author = {Dobson, Matthew and Legoll, Fr\'ed\'eric and Leli\`evre, Tony and Stoltz, Gabriel},
     title = {Derivation of Langevin dynamics in a nonzero background flow field},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {47},
     year = {2013},
     pages = {1583-1626},
     doi = {10.1051/m2an/2013077},
     mrnumber = {3110489},
     zbl = {1287.82017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2013__47_6_1583_0}
}
Dobson, Matthew; Legoll, Frédéric; Lelièvre, Tony; Stoltz, Gabriel. Derivation of Langevin dynamics in a nonzero background flow field. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 1583-1626. doi : 10.1051/m2an/2013077. http://gdmltest.u-ga.fr/item/M2AN_2013__47_6_1583_0/

[1] M.P. Allen and D.J. Tildesley, Computer simulation of liquids. Clarendon Press, New York, NY, USA (1989). | Zbl 0703.68099

[2] P. Billingsley, Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley and Sons Inc., New York, second edition (1999). | MR 1700749 | Zbl 0172.21201

[3] P. Calderoni, D. Dürr and S. Kusuoka, A mechanical model of Brownian motion in half-space. J. Stat. Phys. 55 (1989) 649-693. | MR 1003533 | Zbl 0713.60111

[4] G. Ciccotti, R. Kapral and A. Sergi, Non-equilibrium molecular dynamics. In Handbook of Materials Modeling, edited by S. Yip (2005) 745-761.

[5] R. Cont and P. Tankov, Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL (2004). | MR 2042661 | Zbl 1052.91043

[6] D. Dürr, S. Goldstein and J. Lebowitz, A mechanical model for the Brownian motion of a convex body. Z. Wahrscheinlichkeit 62 (1983) 427-448. | MR 690569 | Zbl 0505.60089

[7] D. Dürr, S. Goldstein and J.L. Lebowitz. A mechanical model of Brownian motion. Comm. Math. Phys. 78 (1981) 507-530. | MR 606461 | Zbl 0457.60086

[8] B. Edwards, C. Baig and D. Keffer, A validation of the p-SLLOD equations of motion for homogeneous steady-state flows. J. Chem. Phys. 124 (2006).

[9] D.J. Evans and G.P. Morriss, Statistical mechanics of nonequilibrium liquids. ANU E Press, Canberra (2007). | Zbl 1145.82301

[10] N.G. Hadjiconstantinou, Discussion of recent developments in hybrid atomistic-continuum methods for multiscale hydrodynamics. Bull. Pol. Acad. Sci-Te. 53 (2005) 335-342. | Zbl 1194.76019

[11] J.H. Irving and J.G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18 (1950) 817-829. | MR 37240

[12] R. Joubaud and G. Stoltz, Nonequilibrium shear viscosity computations with Langevin dynamics. Multiscale Model. Simul. 10 (2012) 191-216. | MR 2902604 | Zbl 1246.82092

[13] P. Kotelenez, Stochastic ordinary and stochastic partial differential equations. In vol. 58 of Stoch. Modell. Appl. Probab. (2008). | MR 2370567 | Zbl 1159.60004

[14] T.G. Kurtz, Semigroups of conditioned shifts and approximation of Markov processes. Ann. Probab. 3 (1975) 618-642. | MR 383544 | Zbl 0318.60026

[15] S. Kusuoka and S. Liang, A Classical Mechanical Model of Brownian Motion with Plural Particles. Rev. Math. Phys. 22 (2010) 733-838. | MR 2673695 | Zbl pre05793862

[16] C. Le Bris and T. Lelièvre, Micro-macro models for viscoelastic fluids: modelling, mathematics and numerics. Sci. China Math. 55 (2012) 353-384. | MR 2886543 | Zbl pre06040076

[17] F. Legoll, M. Luskin and R. Moeckel, Non-ergodicity of the Nosé-Hoover thermostatted harmonic oscillator. Arch. Ration. Mech. Anal. 184 (2007) 449-463. | MR 2299758 | Zbl 1122.82002

[18] F. Legoll, M. Luskin and R. Moeckel, Non-ergodicity of Nosé-Hoover dynamics. Nonlinearity 22 (2009) 1673-1694. | MR 2519685 | Zbl 1173.37066

[19] M. Mcphie, P. Daivis, I. Snook, J. Ennis and D. Evans, Generalized Langevin equation for nonequilibrium systems. Phys. A 299 (2001) 412-426. | Zbl 0972.82060

[20] S.T. O'Connell and P.A. Thompson, Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows. Phys. Rev. E 52 (1995) R5792-R5795.

[21] W. Ren and W. E, Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics. J. Comput. Phys. 204 (2005) 1-26. | MR 2121901 | Zbl 1143.76541

[22] R. Rowley and M. Painter, Diffusion and viscosity equations of state for a Lennard-Jones fluid obtained from molecular dynamics simulations. Int. J. Thermophys. 18 (1997) 1109-1121.

[23] A.V. Skorokhod, Limit theorems for Markov processes. Theor. Probab. Appl. 3 (1958) 202-246. | Zbl 0090.35501

[24] T. Soddemann, B. Dünweg and K. Kremer, Dissipative particle dynamics: A useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys. Rev. E 68 (2003) 046702.

[25] B. Todd and P.J. Daivis, A new algorithm for unrestricted duration nonequilibrium molecular dynamics simulations of planar elongational flow. Comput. Phys. Commun. 117 (1999) 191-199.

[26] B.D. Todd and P.J. Daivis, Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: techniques and applications. Mol. Simulat. 33 (2007) 189-229. | Zbl 1112.76057

[27] M.E. Tuckerman, C.J. Mundy, S. Balasubramanian and M.L. Klein, Modified nonequilibrium molecular dynamics for fluid flows with energy conservation. J. Chem. Phys. 106 (1997) 5615-5621.

[28] T. Werder, J.H. Walther and P. Koumoutsakos, Hybrid atomistic-continuum method for the simulation of dense fluid flows. J. Comp. Phys. 205 (2005) 373-390. | MR 2132314 | Zbl 1087.76542