Dual-mixed finite element methods for the Navier-Stokes equations
Howell, Jason S. ; Walkington, Noel J.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013), p. 789-805 / Harvested from Numdam

A mixed finite element method for the Navier-Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier-Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf-sup conditions are developed.

Publié le : 2013-01-01
DOI : https://doi.org/10.1051/m2an/2012050
Classification:  65N60,  65N12,  65M60,  65M12
@article{M2AN_2013__47_3_789_0,
     author = {Howell, Jason S. and Walkington, Noel J.},
     title = {Dual-mixed finite element methods for the Navier-Stokes equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {47},
     year = {2013},
     pages = {789-805},
     doi = {10.1051/m2an/2012050},
     mrnumber = {3056409},
     zbl = {1266.76029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2013__47_3_789_0}
}
Howell, Jason S.; Walkington, Noel J. Dual-mixed finite element methods for the Navier-Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 789-805. doi : 10.1051/m2an/2012050. http://gdmltest.u-ga.fr/item/M2AN_2013__47_3_789_0/

[1] D.N. Arnold, F. Brezzi and J. Douglas, Jr., PEERS: a new mixed finite element for plane elasticity. Japan J. Appl. Math. 1 (1984) 347-367. | MR 840802 | Zbl 0633.73074

[2] D.N. Arnold, J. Douglas, Jr. and C.P. Gupta, A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45 (1984) 1-22. | MR 761879 | Zbl 0558.73066

[3] D.N. Arnold, R.S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76 (2007) 1699-1723 (electronic). | MR 2336264 | Zbl 1118.74046

[4] J. Barlow, Optimal stress location in finite element method. Internat. J. Numer. Methods Engrg. 10 (1976) 243-251. | Zbl 0322.73049

[5] D. Boffi, F. Brezzi, L.F. Demkowicz, R.G. Durán, R.S. Falk and M. Fortin, Mixed finite elements, compatibility conditions, and applications, Springer-Verlag, Berlin. Lect. Notes Math. 1939 (2008). Lectures given at the C.I.M.E. Summer School held in Cetraro, June 26-July 1, 2006, edited by Boffi and Lucia Gastaldi. | MR 2459075 | Zbl 1138.65001

[6] D. Boffi, F. Brezzi and M. Fortin, Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8 (2009) 95-121. | MR 2449101 | Zbl 1154.74041

[7] F. Brezzi, J. Douglas, Jr. and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217-235. | MR 799685 | Zbl 0599.65072

[8] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Comput. Math. Springer-Verlag, New York 15 (1991). | MR 1115205 | Zbl 0788.73002

[9] F. Brezzi, J. Rappaz and P.-A. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions. Numer. Math. 36 (1980/81) 1-25. | MR 595803 | Zbl 0488.65021

[10] Z. Cai, C. Wang and S. Zhang, Mixed finite element methods for incompressible flow: stationary Navier-Stokes equations. SIAM J. Numer. Anal. 48 (2010) 79-94. | MR 2608359 | Zbl pre05858676

[11] Z. Cai and Y. Wang, Pseudostress-velocity formulation for incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 63 (2010) 341-356. | MR 2662525 | Zbl pre05712411

[12] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | Zbl 0368.65008

[13] B. Cockburn, J. Gopalakrishnan and J. Guzmán, A new elasticity element made for enforcing weak stress symmetry. Math. Comput. 79 (2010) 1331-1349. | MR 2629995 | Zbl pre05776269

[14] M. Farhloul and H. Manouzi, Analysis of non-singular solutions of a mixed Navier-Stokes formulation. Comput. Methods Appl. Mech. Engrg. 129 (1996) 115-131. | MR 1376913 | Zbl 0865.76039

[15] M. Farhloul, S. Nicaise and L. Paquet, A refined mixed finite-element method for the stationary Navier-Stokes equations with mixed boundary conditions. IMA J. Numer. Anal. 28 (2008) 25-45. | MR 2387904 | Zbl 1166.76028

[16] M. Farhloul, S. Nicaise and L. Paquet, A priori and a posteriori error estimations for the dual mixed finite element method of the Navier-Stokes problem. Numer. Methods Partial Differ. Equ. 25 (2009) 843-869. | MR 2526985 | Zbl 1166.76027

[17] V. Girault and P.A. Raviart, Finite Element Approximation of the Navier Stokes Equations. Springer Verlag, Berlin, Heidelbert, New York. Lect. Notes Math. 749 (1979). | MR 548867 | Zbl 0413.65081

[18] J. Gopalakrishnan and J. Guzmán, A second elasticity element using the matrix bubble, IMA J. Numer. Anal. 32 (2012) 352-372. | MR 2875255 | Zbl 1232.74101

[19] J.S. Howell and N.J. Walkington, Inf-sup conditions for twofold saddle point problems. Numer. Math. 118 (2011) 663-693. | MR 2822495 | Zbl 1230.65128

[20] W. Layton, Introduction to the numerical analysis of incompressible viscous flows, Computational Science & Engineering, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA 6 (2008). | MR 2442411 | Zbl 1153.76002

[21] P.-A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Springer, Berlin. Lect. Notes Math. 606 (1977) 292-315. | MR 483555 | Zbl 0362.65089

[22] L.R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér. 19 (1985) 111-143. | Numdam | MR 813691 | Zbl 0608.65013

[23] A. Shapiro, The use of an exact solution of the navier-stokes equations in a validation test of a three-dimensional non-hydrostatic numerical model. Mon. Wea. Rev. 121 (1993) 2420-2425.

[24] R.E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI 49 (1997). | MR 1422252 | Zbl 0870.35004

[25] R. Stenberg, Analysis of mixed finite elements methods for the Stokes problem: a unified approach. Math. Comput. 42 (1984) 9-23. | MR 725982 | Zbl 0535.76037

[26] R. Stenberg, A family of mixed finite elements for the elasticity problem. Numer. Math. 53 (1988) 513-538. | MR 954768 | Zbl 0632.73063

[27] R. Temam, Navier-Stokes Equations, North Holland (1977). | MR 609732 | Zbl 0383.35057

[28] S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comput. 74 (2005) 543-554. | MR 2114637 | Zbl 1085.76042

[29] Z. Zhang, Ultraconvergence of the patch recovery technique. Math. Comput. 65 (1996) 1431-1437. | MR 1370858 | Zbl 0853.65116

[30] O.C. Zienkiewicz, R. Taylor and J. Too, Reduced integration technique in general analysis of plates and shells. Inter. J. Numer. Methods Engrg. 3 (1971) 275-290. | Zbl 0253.73048

[31] O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates I. The recovery technique. Internat. J. Numer. Methods Engrg. 33 (1992) 1331-1364. | MR 1161557 | Zbl 0769.73084

[32] O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. II. Error estimates and adaptivity. Inter. J. Numer. Methods Engrg. 33 (1992) 1365-1382. | MR 1161558 | Zbl 0769.73085

[33] O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Engrg. 101 (1992) 207-224. Reliability in computational mechanics (Kraków 1991). | MR 1195585 | Zbl 0779.73078