Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation
Chen, Huangxin ; Hoppe, Ronald H. W. ; Xu, Xuejun
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013), p. 125-147 / Harvested from Numdam

For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec's first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss-Seidel type which are performed only on basis functions associated with newly created edges/nodal points or those edges/nodal points where the support of the corresponding basis function has changed during the refinement process. The adaptive mesh refinement is based on Dörfler marking for residual-type a posteriori error estimators and the newest vertex bisection strategy. Using the abstract Schwarz theory of multilevel iterative schemes, quasi-optimal convergence of the LMM is shown, i.e., the convergence rates are independent of mesh sizes and mesh levels provided the coarsest mesh is chosen sufficiently fine. The theoretical findings are illustrated by the results of some numerical examples.

Publié le : 2013-01-01
DOI : https://doi.org/10.1051/m2an/2012023
Classification:  65N30,  65N50,  65N55,  78M60
@article{M2AN_2013__47_1_125_0,
     author = {Chen, Huangxin and Hoppe, Ronald H. W. and Xu, Xuejun},
     title = {Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {47},
     year = {2013},
     pages = {125-147},
     doi = {10.1051/m2an/2012023},
     mrnumber = {2968698},
     zbl = {1278.65167},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2013__47_1_125_0}
}
Chen, Huangxin; Hoppe, Ronald H. W.; Xu, Xuejun. Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 125-147. doi : 10.1051/m2an/2012023. http://gdmltest.u-ga.fr/item/M2AN_2013__47_1_125_0/

[1] B. Aksoylu and M. Holst, Optimality of multilevel preconditioners for local mesh refinement in three dimensions. SIAM J. Numer. Anal. 44 (2006) 1005-1025. | MR 2231853 | Zbl 1153.65093

[2] B. Aksoylu, S. Bond and M. Holst, An odyssey into local refinement and multilevel preconditioning III : implementation and numerical experiments. SIAM J. Sci. Comput. 25 (2003) 478-498. | MR 2058071 | Zbl 1048.65104

[3] D. Arnold, R. Falk and R. Winther, Multigrid in H(div) and H(curl). Numer. Math. 85 (2000) 197-218. | MR 1754719 | Zbl 0974.65113

[4] D. Bai and A. Brandt, Local mesh refinement multilevel techniques. SIAM J. Sci. Stat. Comput. 8 (1987) 109-134. | MR 879406 | Zbl 0619.65091

[5] E. Bänsch, Local mesh refinement in 2 and 3 dimensions. Impact Comput. Sci. Eng. 3 (1991) 181-191. | MR 1141298 | Zbl 0744.65074

[6] R. Beck, P. Deuflhard, R. Hiptmair, R.H.W. Hoppe and B. Wohlmuth, Adaptive multilevel methods for edge element discretizations of Maxwell's equations. Surv. Math. Indust. 8 (1999) 271-312. | MR 1737416 | Zbl 0939.65136

[7] R. Beck, R. Hiptmair, R.H.W. Hoppe and B. Wohlmuth, Residual based a posteriori error estimators for eddy current computation. ESAIM : M2AN 34 (2000) 159-182. | Numdam | MR 1735971 | Zbl 0949.65113

[8] A. Bossavit, Computational Electromagnetism : Variational Formulations, Complementarity, Edge Elements. Academic Press, San Diego (1998). | MR 1488417 | Zbl 0945.78001

[9] J.H. Bramble, Multigrid Methods. Pitman (1993). | MR 1247694 | Zbl 0786.65094

[10] J.H. Bramble, J.E. Pasciak, J. Wang and J. Xu, Convergence estimates for product iterative methods with applications to domain decomposition. Math. Comp. 57 (1991) 23-45. | MR 1090464 | Zbl 0754.65085

[11] J.H. Bramble, D.Y. Kwak and J.E. Pasciak, Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems. SIAM J. Numer. Anal. 31 (1994) 1746-1763. | MR 1302683 | Zbl 0813.65130

[12] C. Carstensen and R.H.W. Hoppe, Convergence analysis of an adaptive edge finite element method for the 2d eddy current equations. J. Numer. Math. 13 (2005) 19-32. | MR 2130149 | Zbl 1073.78008

[13] H. Chen and X. Xu, Local multilevel methods for adaptive finite element methods for nonsymmetric and indefinite elliptic boundary value problems. SIAM J. Numer. Anal. 47 (2010) 4492-4516. | MR 2595046 | Zbl 1209.65132

[14] Z. Chen, L. Wang and W. Zheng, An adaptive multilevel method for time-harmonic Maxwell equations with singularities. SIAM J. Sci. Comput. 29 (2007) 118-138. | MR 2285885 | Zbl 1136.78013

[15] J. Chen, Y. Xu and J. Zou, Convergence analysis of an adaptive edge element method for Maxwell's equations. Appl. Numer. Math. 59 (2009) 2950-2969. | MR 2560827 | Zbl 1183.78032

[16] W. Dahmen and A. Kunoth, Multilevel preconditioning. Numer. Math. 63 (1992) 315-344. | MR 1186345 | Zbl 0757.65031

[17] W. Dörfler, A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106-1124. | MR 1393904 | Zbl 0854.65090

[18] J. Gopalakrishnan and J. Pasciak, Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations. Math. Comp. 72 (2003) 1-15. | MR 1933811 | Zbl 1009.78009

[19] J. Gopalakrishnan, J. Pasciak and L.F. Demkowicz, Analysis of a multigrid algorithm for time harmonic Maxwell equations. SIAM J. Numer. Anal. 42 (2004) 90-108. | MR 2051058 | Zbl 1079.78025

[20] R. Hiptmair, Multigrid method for Maxwell's equations. SIAM J. Numer. Anal. 36 (1998) 204-225. | MR 1654571 | Zbl 0922.65081

[21] R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237-339. | MR 2009375 | Zbl 1123.78320

[22] R. Hiptmair and J. Xu, Nodal auxiliary spaces preconditions in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45 (2007) 2483-2509. | MR 2361899 | Zbl 1153.78006

[23] R. Hiptmair and W. Zheng, Local multigrid in H(curl,Ω). J. Comput. Math. 27 (2009) 573-603. | MR 2536903 | Zbl 1212.65486

[24] R. Hiptmair, H. Wu and W. Zheng, On uniform convergence theory of local multigrid methods in H1(Ω) and H(curl,Ω). Preprint (2010).

[25] R.H.W. Hoppe and J. Schöberl, Convergence of adaptive edge element methods for the 3D eddy currents equations. J. Comput. Math. 27 (2009) 657-676. | MR 2536907 | Zbl 1212.65126

[26] R.H.W. Hoppe, X. Xu and H. Chen, Local Multigrid on Adaptively Refined Meshes and Multilevel Preconditioning with Applications to Problems in Electromagnetism and Acoustics, in Efficient Preconditioned Solution Methods for Elliptic Partial Differential Equations, edited by O. Axelsson and J. Karatson. Bentham, Bussum, The Netherlands (2010) 125-145.

[27] R. Leis, Exterior boundary-value problems in mathematical physics, in Trends in Applications of Pure Mathematics to Mechanics, edited by H. Zorski. Monographs Stud. Math. 5 (1979) 187-203. | MR 566529 | Zbl 0414.73082

[28] P. Monk, A posteriori error indicators for Maxwell's equations. Comput. Appl. Math. 100 (1998) 173-190. | MR 1659117 | Zbl 1023.78004

[29] P. Monk, Finite element methods for Maxwell equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003). | MR 2059447 | Zbl 1024.78009

[30] J.-C. Nédélec, Mixed finite element in lR3. Numer. Math. 35 (1980) 315-341. | Zbl 0419.65069

[31] J.-C. Nédélec, A new family of mixed finite elements in lR3. Numer. Math. 50 (1986) 57-81. | MR 864305 | Zbl 0625.65107

[32] P. Oswald, Multilevel Finite Element Approximation : Theory and Applications. Teubner, Stuttgart (1994). | MR 1312165 | Zbl 0830.65107

[33] U. Rüde, Fully adaptive multigrid methods. SIAM J. Numer. Anal. 30 (1993) 230-248. | MR 1202664 | Zbl 0849.65090

[34] O. Sterz, A. Hauser and G. Wittum, Adaptive local multigrid methods for solving time-harmonic eddy current problems. IEEE Trans. Magn. 42 (2006) 309-318.

[35] L. Tartar, Introduction to Sobolev Spaces and Interpolation Theory. Springer, Berlin, Heidelberg, New York (2007). | MR 2328004

[36] H. Whitney, Geometric Integration Theory. Princeton University Press, Princeton (1957). | MR 87148 | Zbl 0083.28204

[37] H.J. Wu and Z.M. Chen, Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems. Sci. China 39 (2006) 1405-1429. | MR 2287269 | Zbl 1112.65104

[38] J. Xu, L. Chen and R. Nochetto, Optimal multilevel methods for H(grad), H(curl), and H(div) systems on graded and unstructured grids, in Multiscale, Nonlinear and Adaptive Approximation. Springer (2009) 599-659. | MR 2648382 | Zbl 1193.65209

[39] X. Xu, H. Chen and R.H.W. Hoppe, Optimality of local multilevel methods on adaptively refined meshes for elliptic boundary value problems. J. Numer. Math. 18 (2010) 59-90. | MR 2629823 | Zbl 1194.65147

[40] X. Xu, H. Chen and R.H.W. Hoppe, Optimality of local multilevel methods for adaptive nonconforming P1 finite element methods. J. Comput. Math. (2012), in press. | Zbl 1289.65274

[41] L. Zhong, L. Chen and J. Xu, Convergence of adaptive edge finite element methods for H(curl)-elliptic problems. Numer. Lin. Algebra Appl. 17 (2009) 415-432. | MR 2650219 | Zbl 1240.65338

[42] L. Zhong, L. Chen, S. Shu, G. Wittum and J. Xu, Quasi-optimal convergence of adaptive edge finite element methods for three dimensional indefinite time-harmonic Maxwell's equations. Math. Comp. 81 (2012), 623-642. | MR 2869030 | Zbl 1263.78012