A Superconvergence result for mixed finite element approximations of the eigenvalue problem
Lin, Qun ; Xie, Hehu
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012), p. 797-812 / Harvested from Numdam

In this paper, we present a superconvergence result for the mixed finite element approximations of general second order elliptic eigenvalue problems. It is known that a superconvergence result has been given by Durán et al. [Math. Models Methods Appl. Sci. 9 (1999) 1165-1178] and Gardini [ESAIM: M2AN 43 (2009) 853-865] for the lowest order Raviart-Thomas approximation of Laplace eigenvalue problems. In this work, we introduce a new way to derive the superconvergence of general second order elliptic eigenvalue problems by general mixed finite element methods which have the commuting diagram property. Some numerical experiments are given to confirm the theoretical analysis.

Publié le : 2012-01-01
DOI : https://doi.org/10.1051/m2an/2011065
Classification:  65N30,  65N25,  65L15,  65B99
@article{M2AN_2012__46_4_797_0,
     author = {Lin, Qun and Xie, Hehu},
     title = {A Superconvergence result for mixed finite element approximations of the eigenvalue problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {46},
     year = {2012},
     pages = {797-812},
     doi = {10.1051/m2an/2011065},
     mrnumber = {2891470},
     zbl = {1277.65091},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2012__46_4_797_0}
}
Lin, Qun; Xie, Hehu. A Superconvergence result for mixed finite element approximations of the eigenvalue problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) pp. 797-812. doi : 10.1051/m2an/2011065. http://gdmltest.u-ga.fr/item/M2AN_2012__46_4_797_0/

[1] I. Babuška and J.E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comp. 52 (1989) 275-297. | MR 962210 | Zbl 0675.65108

[2] I. Babuška and J. Osborn, Eigenvalue Problems, in Handbook of Numerical Analysis II, Finite Element Methods (Part 1), edited by P.G. Lions and P.G. Ciarlet. North-Holland, Amsterdam (1991) 641-787. | MR 1115240 | Zbl 0875.65087

[3] C. Bacuta and J.H. Bramble, Regularity estimates for the solutions of the equations of linear elasticity in convex plane polygonal domain, Special issue dedicated to Lawrence E. Payne. Z. Angew. Math. Phys. 54 (2003) 874-878. | MR 2019187 | Zbl 1032.74026

[4] D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1-120. | MR 2652780 | Zbl 1242.65110

[5] D. Boffi, F. Brezzi and L. Gastaldi, On the convergence of eigenvalues for mixed fomulations. Ann. Scuola Norm. Sup. Pisa Cl. Sci 25 (1997) 131-154. | Numdam | MR 1655512 | Zbl 1003.65052

[6] D. Boffi, F. Brezzi and L. Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp. 69 (2000) 121-140. | MR 1642801 | Zbl 0938.65126

[7] S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). | MR 1278258 | Zbl 1135.65042

[8] F. Brezzi and M. Fortin, MixedandHybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002

[9] F. Chatelin, Spectral Approximation of Linear Operators. Academic Press Inc., New York (1983). | MR 716134 | Zbl 0517.65036

[10] J. Douglas and J.E. Roberts, Global estimates for mixed methods for second order elliptic equations. Math. Comp. 44 (1985) 39-52. | MR 771029 | Zbl 0624.65109

[11] R. Durán, L. Gastaldi and C. Padra, A posteriori error estimators for mixed approximations of eigenvalue problems. Math. Models Methods Appl. Sci. 9 (1999) 1165-1178. | MR 1722056 | Zbl 1012.65112

[12] F. Gardini, A posteriori error estimates for an eigenvalue problem arising from fluid-structure interaction. Instituto Lombardo (Rend. Sc.) (2004) 138. | MR 2641935 | Zbl 1203.76114

[13] F. Gardini, Mixed approximation of eigenvalue problems : a superconvergence result. ESAIM : M2AN 43 (2009) 853-865. | Numdam | MR 2559736 | Zbl 1190.65167

[14] V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Berlin (1986). | MR 851383 | Zbl 0585.65077

[15] P. Grisvard, Singularities in Boundary Problems. MASSON and Springer-Verlag (1985). | Zbl 0766.35001

[16] Q. Lin and J. Lin, Finite Element Methods : Accuracy and Inprovement. China Sci. Tech. Press (2005).

[17] Q. Lin and H. Xie, Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element method. Appl. Numer. Math. 59 (2009) 1884-1893. | MR 2536089 | Zbl 1201.65202

[18] Q. Lin and N. Yan, The Construction and Analysis of High Efficiency Finite Element Methods. HeBei University Publishers (1995) (in Chinese)

[19] Q. Lin, H. Huang and Z. Li, New expansion of numerical eigenvalue for − Δu = λρu by nonconforming elements. Math. Comp. 77 (2008) 2061-2084. | MR 2429874 | Zbl 1198.65228

[20] B. Mercier, J. Osborn, J. Rappaz and P.A. Raviart, Eigenvalue approximation by mixed and hybrid methods. Math. Comp. 36 (1981) 427-453. | MR 606505 | Zbl 0472.65080

[21] J. Osborn, Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations. SIAM J. Numer. Anal. 13 (1976) 185-197. | MR 447842 | Zbl 0334.76010