An hp-Discontinuous Galerkin Method for the Optimal Control Problem of Laser Surface Hardening of Steel
Nupur, Gupta ; Neela, Nataraj
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011), p. 1081-1113 / Harvested from Numdam

In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an hp-DGFEM, time and control discretizations are based on a discontinuous Galerkin method. A priori error estimates are developed at different discretization levels. Numerical experiments presented justify the theoretical order of convergence obtained.

Publié le : 2011-01-01
DOI : https://doi.org/10.1051/m2an/2011013
Classification:  65N12,  65N30,  65M12,  93C20
@article{M2AN_2011__45_6_1081_0,
     author = {Nupur, Gupta and Neela, Nataraj},
     title = {An $hp$-Discontinuous Galerkin Method for the Optimal Control Problem of Laser Surface Hardening of Steel},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {45},
     year = {2011},
     pages = {1081-1113},
     doi = {10.1051/m2an/2011013},
     zbl = {1269.65064},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2011__45_6_1081_0}
}
Nupur, Gupta; Neela, Nataraj. An $hp$-Discontinuous Galerkin Method for the Optimal Control Problem of Laser Surface Hardening of Steel. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 1081-1113. doi : 10.1051/m2an/2011013. http://gdmltest.u-ga.fr/item/M2AN_2011__45_6_1081_0/

[1] V. Arnăutu, D. Hömberg and J. Sokołowski, Convergence results for a nonlinear parabolic control problem. Numer. Funct. Anal. Optim. 20 (1999) 805-824. | MR 1728188 | Zbl 0951.49005

[2] D.N. Arnold, An interior penalty method for discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | MR 664882 | Zbl 0482.65060

[3] D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. | MR 1885715 | Zbl 1008.65080

[4] I. Babuška, The finite element method with penalty. Math. Comput. 27 (1973) 221-228. | MR 351118 | Zbl 0299.65057

[5] C. Bernardi, M. Dauge and Y. Maday, Polynomials in the Sobolev world. Preprint of the Laboratoire Jacques-Louis Lions R03038 (2003).

[6] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0511.65078

[7] M. Crouzeix, V. Thomee, L.B. Wahlbin, Error estimates for spatial discrete approximation of semilinear parabolic equation with initial data of low regularity. Math. Comput. 53 187 (1989) 25-41. | MR 970700 | Zbl 0674.65071

[8] J. Douglas, Jr. and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Computing Methods in Applied Sciences, Lecture Notes in Phys. 58. Springer-Verlag, Berlin (1976). | MR 440955

[9] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. | MR 1083324 | Zbl 0732.65093

[10] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems II: optimal error estimates in L L 2 and L L . SIAM J. Numer. Anal. 32 (1995) 706-740. | MR 1335652 | Zbl 0830.65094

[11] L.C. Evans, Partial Differential Equations. American Mathematics Society, Providence, Rhode Island (1998). | Zbl 1194.35001

[12] T. Gudi, N. Nataraj and A.K. Pani, Discontinuous Galerkin methods for quasi-linear elliptic problems of nonmonotone type. SIAM J. Numer. Anal. 45 (2007) 163-192. | MR 2285849 | Zbl 1140.65082

[13] T. Gudi, N. Nataraj and A.K. Pani, hp-discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems. Numer. Math. 109 (2008) 233-268. | MR 2385653 | Zbl 1146.65076

[14] T. Gudi, N. Nataraj and A.K. Pani, An hp-local discontinuous Galerkin method for some quasilinear elliptic boundary value problems of nonmonotone type. Math. Comput. 77 (2008) 731-756. | MR 2373177 | Zbl 1147.65093

[15] N. Gupta, N. Nataraj and A.K. Pani, An optimal control problem of laser surface hardening of steel. Int. J. Numer. Anal. Model. 7 (2010). | MR 2644298 | Zbl pre05773761

[16] N. Gupta, N. Nataraj and A.K. Pani, A priori error estimates for the optimal control of laser surface hardening of steel. Paper communicated. | Zbl 1269.49049

[17] D. Hömberg, A mathematical model for the phase transitions in eutectoid carbon steel. IMA J. Appl. Math. 54 (1995) 31-57. | MR 1319948 | Zbl 0830.65126

[18] D. Hömberg, Irreversible phase transitions in steel. Math. Methods Appl. Sci. 20 (1997) 59-77. | MR 1429331 | Zbl 0876.35118

[19] D. Hömberg and J. Fuhrmann, Numerical simulation of surface hardening of steel. Int. J. Numer. Meth. Heat Fluid Flow 9 (1999) 705-724. | Zbl 1073.76597

[20] D. Hömberg and J. Sokolowski, Optimal control of laser hardening. Adv. Math. Sci. 8 (1998) 911-928. | MR 1657192 | Zbl 0937.35186

[21] D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition. Math. Comput. Model. 37 (2003) 1003-1028. | MR 2017971 | Zbl 1044.49028

[22] D. Hömberg and W. Weiss, PID-control of laser surface hardening of steel. IEEE Trans. Control Syst. Technol. 14 (2006) 896-904.

[23] P. Houston, C. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133-2163. | MR 1897953 | Zbl 1015.65067

[24] A. Lasis and E. Süli, hp-version discontinuous Galerkin finite element methods for semilinear parabolic problems. Report No. 03/11, Oxford university computing laboratory (2003). | Zbl 1155.65073

[25] A. Lasis and E. Süli, Poincaré-type inequalities for broken Sobolev spaces. Isaac Newton Institute for Mathematical Sciences, Preprint No. NI03067-CPD (2003).

[26] J.B. Leblond and J. Devaux, A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size. Acta Metall. 32 (1984) 137-146.

[27] V.I. Mazhukin and A.A. Samarskii, Mathematical modelling in the technology of laser treatments of materials. Surveys Math. Indust. 4 (1994) 85-149. | MR 1284202 | Zbl 0805.35165

[28] D. Meidner, and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems part I: problems without control constraints. SIAM J. Control Optim. 47 (2007) 1150-1177. | MR 2407012 | Zbl 1161.49026

[29] J.A. Nitsche, Über ein Variationprinzip zur Lösung Dirichlet-Problemen bei Verwen-dung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9-15. | MR 341903 | Zbl 0229.65079

[30] J.T. Oden, I. Babuška and C.E. Baumann, A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146 (1998) 491-519. | MR 1654911 | Zbl 0926.65109

[31] S. Prudhomme, F. Pascal and J.T. Oden, Review of error estimation for discontinuous Galerkin method. TICAM-report 00-27 (2000).

[32] B. Rivière, Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation. Frontiers in Mathematics 35. SIAM 2008. ISBN: 978-0-898716-56-6. | MR 2431403 | Zbl 1153.65112

[33] B. Rivière and M.F. Wheeler, A discontinuous Galerkin method applied to nonlinear parabolic equations. The Center for Substance Modeling, TICAM, The University of Texas, Austin TX 78712, USA. | Zbl 0946.65078

[34] B. Rivière, M.F. Wheeler and V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 902-931. | MR 1860450 | Zbl 1010.65045

[35] V. Thomée, Galerkin finite element methods for parabolic problems. Springer (1997). | Zbl 1105.65102

[36] S. Volkwein, Non-linear conjugate gradient method for the optimal control of laser surface hardening, Optim. Methods Softw. 19 (2004) 179-199. | MR 2046961 | Zbl 1062.49034

[37] M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152-161. | MR 471383 | Zbl 0384.65058