This paper describes the extension of a recently developed numerical solver for the Landau-Lifshitz Navier-Stokes (LLNS) equations to binary mixtures in three dimensions. The LLNS equations incorporate thermal fluctuations into macroscopic hydrodynamics by using white-noise fluxes. These stochastic PDEs are more complicated in three dimensions due to the tensorial form of the correlations for the stochastic fluxes and in mixtures due to couplings of energy and concentration fluxes (e.g., Soret effect). We present various numerical tests of systems in and out of equilibrium, including time-dependent systems, and demonstrate good agreement with theoretical results and molecular simulation.
@article{M2AN_2010__44_5_1085_0, author = {Bell, John B. and Garcia, Alejandro L. and Williams, Sarah A.}, title = {Computational fluctuating fluid dynamics}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {44}, year = {2010}, pages = {1085-1105}, doi = {10.1051/m2an/2010053}, mrnumber = {2731404}, zbl = {pre05798944}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2010__44_5_1085_0} }
Bell, John B.; Garcia, Alejandro L.; Williams, Sarah A. Computational fluctuating fluid dynamics. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) pp. 1085-1105. doi : 10.1051/m2an/2010053. http://gdmltest.u-ga.fr/item/M2AN_2010__44_5_1085_0/
[1] The direct simulation Monte Carlo method. Comp. Phys. 11 (1997) 588-593.
and ,[2] Brownian motors. Phys. Today 55 (2002) 33-39. | Zbl 1160.82332
and ,[3] Stochastic theory of adiabatic explosion. J. Statis. Phys. 32 (1983) 1-23.
, , and ,[4] Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations. Phys. Rev. E 76 (2007) 016708.
, and ,[5] Hydrodynamic fluctuations in the Kolmogorov flow: Linear regime. Phys. Rev. E 59 (1999) 5503-5510.
, and ,[6] Hydrodynamic fluctuations in the Kolmogorov flow: Nonlinear regime. Phys. Rev. E 62 (2000) 6560-6570.
, and ,[7] Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford (1994).
,[8] Boltzmann-Langevin equation and hydrodynamic fluctuations. Phys. Rev. 187 (1969) 267-272.
and ,[9] Second phase spinodal decomposition for the Cahn-Hilliard-Cook equation. Trans. Amer. Math. Soc. 360 (2008) 449-489. | Zbl 1130.60066
, and ,[10] Relativistic fluctuating hydrodynamics. Class. Quantum Grav. 15 (1998) 653-667. | Zbl 0913.53040
,[11] A practical splitting method for stiff SDEs with application to problems with small noise. Multiscale Model. Simul. 6 (2007) 212-227. | Zbl 1135.60043
and ,[12] Hydrodynamic correlation functions for binary mixtures. Phys. Chem. Liquids 2 (1971) 213-235.
, and ,[13] Multiscale modeling of liquids with molecular specificity. Phys. Rev. Lett. 97 (2006) 134501.
, and ,[14] Fluctuating hydrodynamic modeling of fluids at the nanoscale. Phys. Rev. E 75 (2007) 026307.
, , and ,[15] Hydrodynamic Fluctuations in Fluids and Fluid Mixtures. Elsevier Science (2007).
and ,[16] Embedding molecular dynamics within fluctuating hydrodynamics in multiscale simulations of liquids. Phys. Rev. E 76 (2007) 036709.
and ,[17] Dynamics of liquid nanojets. Phys. Rev. Lett. 89 (2002) 084502.
,[18] Stochastic differential equations for non-linear hydrodynamics. Physica A 248 (1998) 77.
,[19] Contributions to non-equilibrium thermodynamics. I. Theory of hydrodynamical fluctuations. Phys. Fluids 13 (1970) 1893-1902. | Zbl 0209.57503
and ,[20] Nonequilibrium fluctuations studied by a rarefied gas simulation. Phys. Rev. A 34 (1986) 1454-1457.
,[21] Numerical Methods for Physics. Second edition, Prentice Hall (2000).
,[22] Estimating hydrodynamic quantities in the presence of microscopic fluctuations. Commun. Appl. Math. Comput. Sci. 1 (2006) 53-78. | Zbl 1111.82051
,[23] Fluctuating hydrodynamics and principal oscillation pattern analysis. J. Stat. Phys. 64 (1991) 1121-1132.
and ,[24] Numerical integration of the fluctuating hydrodynamic equations. J. Stat. Phys. 47 (1987) 209-228. | Zbl 0681.76009
, , and ,[25] Hydrodynamic fluctuations in a dilute gas under shear. Phys. Rev. A 36 (1987) 4348-4355.
, , , and ,[26] Hybrid method coupling fluctuating hydrodynamics and molecular dynamics for the simulation of macromolecules. J. Chem. Phys. 126 (2007) 154903.
, and ,[27] Molecular Theory of Gases and Liquids. John Wiley & Sons (1954). | Zbl 0057.23402
, and ,[28] Mesoscopic simulation of Ostwald ripening. J. Comp. Phys. 218 (2006) 429-441. | Zbl 1158.82312
,[29] Spectral method study of domain coarsening. Phys. Rev. E 75 (2007) 046703.
,[30] J García-Ojalvo, R. Toral and J.M. Sancho, Dynamics and scaling of noise-induced domain growth. Eur. Phys. J. B 18 (2000) 663-673.
,[31] Nanohydrodynamics simulations: An atomistic view of the Rayleigh-Taylor instability. PNAS 101 (2004) 5851-5855. | Zbl 1063.76029
, , , , , and ,[32] The importance of fluctuations in fluid mixing. PNAS 104 (2007) 7741-7745.
, , , , , and ,[33] Universality crossover of the pinch-off shape profiles of collapsing liquid nanobridges in vacuum and gaseous environments. Phys. Rev. Lett. 98 (2007) 064504.
and ,[34] Stochastic transitions through unstable limit cycles in a model of bistable thermochemical system. Phys. Chem. Chem. Phys. 10 (2008) 289-296.
and ,[35] Hydrodynamic fluctuations. Phys. Fluids 14 (1971) 1925-1931. | Zbl 0231.76032
and ,[36] Phase separation dynamics under stirring. Phys. Rev. Lett. 75 (1995) 1791-1794.
, and ,[37] Fluid Mechanics, Course of Theoretical Physics 6. Pergamon (1959). | Zbl 0146.22405
and ,[38] Statistical Physics, Course of Theoretical Physics 5. Pergamon, 3rd edition, part 1st edition (1980). | Zbl 0080.19702
and ,[39] Noncritical liquid mixtures far from equilibrium: the Rayleigh line. Phys. Rev. A 40 (1989) 3880-3885.
and ,[40] Fluctuation-induced and nonequilibrium-induced bifurcations in a thermochemical system. Mol. Simulat. 30 (2004) 773-780. | Zbl 1156.80408
and ,[41] Fluctuating hydrodynamics in a dilute gas. Phys. Rev. Lett. 58 (1987) 874-877.
, , and ,[42] On the scattering function of simple fluids in finite systems. J. Stat. Phys. 52 (1988) 295-309.
, , and ,[43] Spurious diffusion in particle simulations of the Kolmogorov flow. Europhys. Lett. 47 (1999) 8-13.
, , and ,[44] Dynamic structure factor in a nonequilibrium fluid: a molecular-dynamics approach. Phys. Rev. A 45 (1992) 7180-7183.
, , and ,[45] Rectification of thermal fluctuations in ideal gases. Phys. Rev. E 70 (2004) 051109.
, and ,[46] Hybrid method for simulating front propagation in reaction-diffusion systems. Phys. Rev. E 69 (2004) 060101.
,[47] Formation, stability, and breakup of nanojets. Science 289 (2000) 1165-1169.
and ,[48] Theory of light scattering by a nonequilibrium binary mixture. Phys. Rev. A 42 (1989) 2003-2014.
and ,[49] Stochastic effects in a thermochemical system with newtonian heat exchange. Phys. Rev. E 64 (2001) 061108.
and ,[50] Sensitivity of explosion to departure from partial equilibrium. Phys. Rev. E 68 (2003) 031105.
and ,[51] Darwin's motors. Nature 417 (2002) 25.
,[52] Statistical Mechanics. Butterworth-Heinemann, Oxford (1996). | Zbl 0862.00007
,[53] Direct measurement of hydrodynamic fluctuations in a binary mixture. Phys. Rev. Lett. 74 (1995) 1578-1581.
and ,[54] Cambridge University Press, Cambridge (1900) 200-207.
, .[55] Fluctuations in nonequilibrium fluids. Phys. Rep. 171 (1988) 1-58.
,[56] Thermal fluctuations in non-equilibrium thermodynamics. J. Non-Equilib. Thermodyn. 32 (2007) 319-329. | Zbl 1130.82029
and ,[57] An overview of Rayleigh-Taylor instability. Phys. D 12 (1984) 3-18. | Zbl 0577.76047
,[58] Kinetic Theory and Fluid Dynamics. Springer (2002). | Zbl 1021.76002
,[59] The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. London Ser. A 201 (1950) 192-196. | Zbl 0038.12201
,[60] Exorcising a Maxwell demon. Phys. Rev. Lett. 93 (2004) 090601.
, and ,[61] Diffusion-driven phase separation of deeply quenched mixtures. Phys. Rev. E 58 (1998) 7691-7699.
, and ,[62] Algorithm refinement for fluctuating hydrodynamics. Multiscale Model. Simul. 6 (2008) 1256-1280. | Zbl pre05381404
, and ,[63] Thermally induced fluctuations below the onset of Rayleigh-Bénard convection. Phys. Rev. Lett. 75 (1995) 1743-1746.
, and ,