Low-variance direct Monte Carlo simulations using importance weights
Al-Mohssen, Husain A. ; Hadjiconstantinou, Nicolas G.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010), p. 1069-1083 / Harvested from Numdam

We present an efficient approach for reducing the statistical uncertainty associated with direct Monte Carlo simulations of the Boltzmann equation. As with previous variance-reduction approaches, the resulting relative statistical uncertainty in hydrodynamic quantities (statistical uncertainty normalized by the characteristic value of quantity of interest) is small and independent of the magnitude of the deviation from equilibrium, making the simulation of arbitrarily small deviations from equilibrium possible. In contrast to previous variance-reduction methods, the method presented here is able to substantially reduce variance with very little modification to the standard DSMC algorithm. This is achieved by introducing an auxiliary equilibrium simulation which, via an importance weight formulation, uses the same particle data as the non-equilibrium (DSMC) calculation; subtracting the equilibrium from the non-equilibrium hydrodynamic fields drastically reduces the statistical uncertainty of the latter because the two fields are correlated. The resulting formulation is simple to code and provides considerable computational savings for a wide range of problems of practical interest. It is validated by comparing our results with DSMC solutions for steady and unsteady, isothermal and non-isothermal problems; in all cases very good agreement between the two methods is found.

Publié le : 2010-01-01
DOI : https://doi.org/10.1051/m2an/2010052
Classification:  60H30,  76P05
@article{M2AN_2010__44_5_1069_0,
     author = {Al-Mohssen, Husain A. and Hadjiconstantinou, Nicolas G.},
     title = {Low-variance direct Monte Carlo simulations using importance weights},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {44},
     year = {2010},
     pages = {1069-1083},
     doi = {10.1051/m2an/2010052},
     mrnumber = {2731403},
     zbl = {1200.82051},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2010__44_5_1069_0}
}
Al-Mohssen, Husain A.; Hadjiconstantinou, Nicolas G. Low-variance direct Monte Carlo simulations using importance weights. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) pp. 1069-1083. doi : 10.1051/m2an/2010052. http://gdmltest.u-ga.fr/item/M2AN_2010__44_5_1069_0/

[1] F.J. Alexander, A.L. Garcia and B.J. Alder, Cell size dependence of transport coefficients in stochastic particle algorithms. Phys. Fluids 10 (1998) 1540-1542.

[2] H.A. Al-Mohssen, An Excursion with the Boltzmann Equation at Low Speeds: Variance-Reduced DSMC. Ph.D. Thesis, Massachusetts Institute of Technology, Dept. of Mechanical Engineering, Cambridge (2010).

[3] H.A. Al-Mohssen and N.G. Hadjiconstantinou, Yet Another Variance Reduction Method for Direct Monte Carlo Simulations of Low-Signal Flows, in 26th International Symposium on Rarefied Gas Dynamics, T. Abe Ed., AIP, Kyoto (2008) 257-262.

[4] L.L. Baker and N.G. Hadjiconstantinou, Variance reduction for Monte Carlo solutions of the Boltzmann equation. Phys. Fluids 17 (2005) 051703. | Zbl 1187.76032

[5] L.L. Baker and N.G. Hadjiconstantinou, Variance-reduced particle methods for solving the Boltzmann equation. J. Comput. Theor. Nanosci. 5 (2008) 165-174.

[6] L.L. Baker and N.G. Hadjiconstantinou, Variance-reduced Monte Carlo solutions of the Boltzmann equation for low-speed gas flows: A discontinuous Galerkin formulation. Int. J. Numer. Methods Fluids 58 (2008) 381-402. | Zbl pre05349632

[7] G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press (1994).

[8] C. Cercignani, The Boltzmann equation and its applications. Springer-Verlag (1988). | Zbl 0646.76001

[9] C. Cercignani, Mathematical Methods in Kinetic Theory. Plenum Press (1990). | Zbl 0726.76083

[10] C. Cercignani, Slow Rarefied Flows: Theory and Application to Micro-Electro-Mechanical Systems. Springer (2006). | Zbl 1097.82001

[11] J. Chun and D.L. Koch, A direct simulation Monte Carlo method for rarefied gas flows in the limit of small Mach number. Phys. Fluids 17 (2005) 107107. | Zbl 1188.76031

[12] A. Doucet and X. Wang, Monte Carlo methods for signal processing: a review in the statistical signal processing context. IEEE Signal Process. Mag. 22 (2005) 152-170.

[13] A.L. Garcia and W. Wagner, Time step truncation error in direct simulation Monte Carlo. Phys. Fluids 12 (2000) 2621-2633. | Zbl 1184.76174

[14] P. Glasserman, Monte Carlo Methods in Financial Engineering. Springer (2004). | Zbl 1038.91045

[15] N.G. Hadjiconstantinou, Analysis of discretization in the direct simulation Monte Carlo. Phys. Fluids 12 (2000) 2634-2638. | Zbl 1184.76203

[16] N.G. Hadjiconstantinou, The limits of Navier-Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics. Phys. Fluids 18 (2006) 111301. | Zbl 1146.76400

[17] N.G. Hadjiconstantinou, A.L. Garcia, M.Z. Bazant and G. He, Statistical error in particle simulations of hydrodynamic phenomena. J. Comput. Phys. 187 (2003) 274-297. | Zbl 1047.76578

[18] T.M.M. Homolle and N.G. Hadjiconstantinou, Low-variance deviational simulation Monte Carlo. Phys. Fluids 19 (2007) 041701. | Zbl 1146.76415

[19] T.M.M. Homolle and N.G. Hadjiconstantinou, A low-variance deviational simulation Monte Carlo for the Boltzmann equation. J. Comput. Phys. 226 (2007) 2341-2358. | Zbl pre05207667

[20] C.D. Landon, Weighted Particle Variance Reduction of Direct Simulation Monte Carlo for the Bhatnagar-Gross-Krook Collision Operator. M.S. Thesis, Massachusetts Institute of Technology, Dept. of Mechanical Engineering, Cambridge (2010).

[21] H.C. Ottinger, B.H.A.A. Van Den Brule and M.A. Hulsen, Brownian configuration fields and variance reduced CONNFFESSIT. J. Non-Newton. Fluid Mech. 70 (1997) 255-261.

[22] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes. Cambridge University Press (2007). | Zbl 1132.65001

[23] G.A. Radtke and N.G. Hadjiconstantinou, Variance-reduced particle simulation of the Boltzmann transport equation in the relaxation-time approximation. Phys. Rev. E 79 (2009) 056711.

[24] R.Y. Rubinstein, Simulation and the Monte Carlo Method. Wiley (1981). | Zbl 1147.68831

[25] D.W. Scott, Multivariate Density Estimation. John Wiley & Sons (1992). | Zbl 0850.62006

[26] Y. Sone, Kinetic Theory and Fluid Dynamics. Birkhauser (2002). | Zbl 1021.76002

[27] W. Wagner, A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation. J. Stat. Phys. 66 (1992) 1011-1044. | Zbl 0899.76312

[28] W. Wagner, Deviational Particle Monte Carlo for the Boltzmann Equation. Monte Carlo Methods Appl. 14 (2008) 191-268. | Zbl 1158.82002