Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system
Besse, Nicolas ; Kröner, Dietmar
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005), p. 1177-1202 / Harvested from Numdam

We present the convergence analysis of locally divergence-free discontinuous Galerkin methods for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition Δth 4/3 , we obtain error estimates in L 2 of order 𝒪(Δt 2 +h m+1/2 ) where m is the degree of the local polynomials.

Publié le : 2005-01-01
DOI : https://doi.org/10.1051/m2an:2005051
Classification:  76W05,  65J10
@article{M2AN_2005__39_6_1177_0,
     author = {Besse, Nicolas and Kr\"oner, Dietmar},
     title = {Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {39},
     year = {2005},
     pages = {1177-1202},
     doi = {10.1051/m2an:2005051},
     mrnumber = {2195909},
     zbl = {1084.76046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2005__39_6_1177_0}
}
Besse, Nicolas; Kröner, Dietmar. Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 1177-1202. doi : 10.1051/m2an:2005051. http://gdmltest.u-ga.fr/item/M2AN_2005__39_6_1177_0/

[1] S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, CNRS Éditions (1991). | MR 1172111 | Zbl 0791.47044

[2] G.A. Baker, W.N. Jureidini and O.A. Karakashian, A piecewise solenoidal vector fields and the stokes problem. SIAM J. Numer. Anal. 27 (1990) 1466-1485. | MR 1080332 | Zbl 0719.76047

[3] D.S. Balsara and D.S. Spicer, A piecewise solenoidal vector fields and the stokes problem. J. Comput. Phys. 149 (1999) 270-292.

[4] J.U. Brackbill and D.C. Barnes. The effect of nonzero ·𝐁 on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35 (1980) 426. | MR 570347 | Zbl 0429.76079

[5] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of numerical analysis, P.G. Ciarlet and J.-L. Lions, Eds., North-Holland (1991) 17-351. | Zbl 0875.65086

[6] B. Cockburn, Discontinuous Galerkin methods for convection dominated problems, in High-order methods for computational physics, Springer, Berlin. Lect. Notes Comput. Sci. Eng. 9 (1999) 69-224. | Zbl 0937.76049

[7] B. Cockburn, F. Li and C.-W. Shu, Locally divergence-free discontinuous Galerkin-methods for the Maxwell equations. J. Comput. Phys. 194 (2004) 588-610. | Zbl 1049.78019

[8] M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains. Math. Method Appl. Sci. 12 (1990) 365-368. | Zbl 0699.35028

[9] M. Costabel and M. Dauge, Un résultat de densité pour les équations de Maxwell régularisées dans un domaine lipschitzien. C. R. Acad. Sci. Paris Sér. I 327 849-854 (1998). | Zbl 0921.35169

[10] W. Dai and P.R. Woodward, On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flow. Astrophys. J. 494 (1998) 317.

[11] A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer and M. Wesenberg, Hyperbolic Divergence cleaning for the MHD equations. J. Comput. Phys. 175 (2002) 645-673. | Zbl 1059.76040

[12] C.R. Evans and J.F. Hawley, Simulation of magnetohydrodynamic flows, a constrained transport method. Astrophys. J. 332 (1988) 659.

[13] C. Foias and R. Temam, Remarques sur les équations de Navier-Stokes et les phénoménes successifs de bifurcation. Ann. Sci. Norm. Sup. Pisa Sér. IV 5 (1978) 29-63. | Numdam | Zbl 0384.35047

[14] K.O. Friedrichs, Symmetric positive linear differential equations. Comm. Pure Appl. Math. XI (1958) 333-418. | Zbl 0083.31802

[15] V. Gilrault and P.-A. Raviart, Finite element methods for the Navier-Stokes equatons, Theory and algorithms. Springer Ser. Comput. Math. 5 (1986). | Zbl 0585.65077

[16] O.A. Karakashian and W.N. Jureidini, A nonconforming finite element method for the stationary Navier-Stokes equations. SIAM J. Numer. Anal. 35 (1998) 93-120. | Zbl 0933.76047

[17] F. Li, C.-W. Shu, Locally divergence-free discontinuous Galerkin methods for MHD equations. SIAM J. Sci. Comput. 27 (2005) 413-442. | Zbl 1123.76341

[18] J.-L. Lions and J. Petree, Sur une classe d'espaces d'interpolation. Publ. I.H.E.S. 19 (1964) 5-68. | Numdam | Zbl 0148.11403

[19] J.C. Nédélec, Mixed finite element in 3 . Numer. Math. 35 (1980) 315-341. | Zbl 0419.65069

[20] K.G. Powell, An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension), ICASE-Report 94-24 (NASA CR-194902), NASA Langley Research Center, Hampton, VA 23681-0001 (1994).

[21] P.-A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite elements methods, in Proc. of the conference held in Rome, 10-12 Dec. 1975, A. Dold, B. Eckmann, Eds., Springer, Berlin, Heidelberg, New York. Lect. Notes Math. 606 (1977). | Zbl 0362.65089

[22] G. Tóth, The ·𝐁=0 constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161 (2000) 605. | MR 1764250 | Zbl 0980.76051

[23] L. Ying, A second order explicit finite element scheme to multidimensional conservation laws and its convergence. Sci. China Ser. A 43 (2000) 945-957. | Zbl 0999.65105

[24] Q. Zhang and C.-W. Shu, Error Estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42 (2004) 641-666. | Zbl 1078.65080