Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices
Bartels, Sören
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005), p. 863-882 / Harvested from Numdam

This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher degree vortices are critical.

Publié le : 2005-01-01
DOI : https://doi.org/10.1051/m2an:2005038
Classification:  35K59,  35Q99,  53A10
@article{M2AN_2005__39_5_863_0,
     author = {Bartels, S\"oren},
     title = {Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {39},
     year = {2005},
     pages = {863-882},
     doi = {10.1051/m2an:2005038},
     mrnumber = {2178565},
     zbl = {1078.35006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2005__39_5_863_0}
}
Bartels, Sören. Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 863-882. doi : 10.1051/m2an:2005038. http://gdmltest.u-ga.fr/item/M2AN_2005__39_5_863_0/

[1] H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983), 311-341. | Zbl 0497.35049

[2] S. Bartels, A posteriori error analysis for Ginzburg-Landau type equations. In preparation (2004).

[3] A. Beaulieu, Some remarks on the linearized operator about the radial solution for the Ginzburg-Landau equation. Nonlinear Anal. 54 (2003) 1079-1119. | Zbl 1035.34095

[4] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (1994). | MR 1269538 | Zbl 0802.35142

[5] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Texts in Applied Mathematics, Springer-Verlag, New York (2002). | MR 1894376 | Zbl 0804.65101

[6] X. Chen, Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Comm. Partial Differential Equations 19 (1994) 1371-1395. | Zbl 0811.35098

[7] Z. Chen and K.-H. Hoffmann, Numerical studies of a non-stationary Ginzburg-Landau model for superconductivity. Adv. Math. Sci. Appl. 5 (1995) 363-389. | Zbl 0846.65051

[8] X. Chen, C.M. Elliott and T. Qi, Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 1075-1088. | Zbl 0816.34003

[9] P. De Mottoni and M. Schatzman, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995) 1533-1589. | Zbl 0840.35010

[10] S. Ding and Z. Liu, Hölder convergence of Ginzburg-Landau approximations to the harmonic map heat flow. Nonlinear Anal. 46 (2001) 807-816. | Zbl 1027.35125

[11] Q. Du, M. Gunzburger and J. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34 (1992), 54-81 | Zbl 0787.65091

[12] Q. Du, M. Gunzburger and J. Peterson, Finite element approximation of a periodic Ginzburg-Landau model for type- II superconductors. Numer. Math. 64 (1993) 85-114. | Zbl 0792.65095

[13] W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Phys. D 77 (1994) 383-404. | Zbl 0814.34039

[14] L.C. Evans, Partial differential equations. Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (1998). | MR 1625845 | Zbl 0902.35002

[15] X. Feng and A. Prohl, Numerical analysis of the Cahn-Hilliard equation and approximation of the Hele-Shaw problem. Interfaces Free Bound. 7 (2005) 1-28. | Zbl 1072.35150

[16] X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math. 94 (2003) 33-65. | Zbl 1029.65093

[17] X. Feng and A. Prohl, Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comp. 73 (2004) 541-567. | MR 2028419 | Zbl 1115.76049

[18] V. Ginzburg and L. Landau, On the theory of superconductivity. Zh. Èksper. Teoret. Fiz. 20 (1950) 1064-1082, in Men of Physics, L.D. Landau, D. ter Haar, Eds., Pergamon, Oxford (1965) 138-167.

[19] R.-M. Hervé and M. Hervé, Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 427-440. | Numdam | Zbl 0836.34090

[20] K.-H. Hoffmann, J. Zou, Finite element approximations of Landau-Ginzburg's equation model for structural phase transitions in shape memory alloys. RAIRO Modél. Math. Anal. Numér. 29 (1995) 629-655. | Numdam | Zbl 0929.65085

[21] A. Jaffe and C. Taubes, Vortices and monopoles. Progress in Physics, Birkhäuser Boston, Inc., Boston, MA (1994). | MR 614447 | Zbl 0457.53034

[22] D. Kessler, R.H. Nochetto and A. Schmidt, A posteriori error control for the Allen-Cahn problem: circumventing Gronwall's inequality. Preprint (2003).

[23] E.H. Lieb and M. Loss, Symmetry of the Ginzburg-Landau minimizer in a disc. Math. Res. Lett. 1 (1994) 701-715. | Zbl 0842.49014

[24] F.H. Lin, Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds. Comm. Pure Appl. Math. 51 (1998) 385-441. | Zbl 0932.35121

[25] F.H. Lin, Some dynamical properties of Ginzburg-Landau vortices. Comm. Pure Appl. Math. 49 (1996) 323-359. | Zbl 0853.35058

[26] F.H. Lin, The dynamical law of Ginzburg-Landau vortices. Proc. of the Conference on Nonlinear Evolution Equations and Infinite-dimensional Dynamical Systems (Shanghai, 1995), World Sci. Publishing, River Edge, NJ (1997) 101-110. | Zbl 0972.35149

[27] F.H. Lin and Q. Du, Ginzburg-Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 28 (1997) 1265-1293. | Zbl 0888.35054

[28] T.C. Lin, The stability of the radial solution to the Ginzburg-Landau equation. Comm. Partial Differential Equations 22 (1997) 619-632. | Zbl 0877.35018

[29] T.C. Lin, Spectrum of the linearized operator for the Ginzburg-Landau equation. Electron. J. Differential Equations 42 (2000), 25 (electronic). | MR 1764706 | Zbl 0954.35119

[30] P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation. J. Funct. Anal. 130 (1995) 334-344. | Zbl 0839.35011

[31] P. Mironescu, Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 593-598. | Zbl 0858.35038

[32] M. Mu, Y. Deng and C.-C. Chou, Numerical methods for simulating Ginzburg-Landau vortices. SIAM J. Sci. Comput. 19 (1998) 1333-1339. | Zbl 0908.65121

[33] J.C. Neu, Vortices in complex scalar fields. Phys. D 43 (1990) 385-406. | Zbl 0711.35024

[34] F. Pacard and T. Riviere, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (2000). | MR 1763040 | Zbl 0948.35003

[35] V. Thomée, Galerkin finite element methods for parabolic problems. Springer Series in Computational Mathematics, Springer-Verlag, Berlin (1997). | MR 1479170 | Zbl 0884.65097

[36] M.F. Wheeler, A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973) 723-759. | Zbl 0232.35060