This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher degree vortices are critical.
@article{M2AN_2005__39_5_863_0,
author = {Bartels, S\"oren},
title = {Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
volume = {39},
year = {2005},
pages = {863-882},
doi = {10.1051/m2an:2005038},
mrnumber = {2178565},
zbl = {1078.35006},
language = {en},
url = {http://dml.mathdoc.fr/item/M2AN_2005__39_5_863_0}
}
Bartels, Sören. Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 863-882. doi : 10.1051/m2an:2005038. http://gdmltest.u-ga.fr/item/M2AN_2005__39_5_863_0/
[1] and, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983), 311-341. | Zbl 0497.35049
[2] , A posteriori error analysis for Ginzburg-Landau type equations. In preparation (2004).
[3] , Some remarks on the linearized operator about the radial solution for the Ginzburg-Landau equation. Nonlinear Anal. 54 (2003) 1079-1119. | Zbl 1035.34095
[4] , and, Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (1994). | MR 1269538 | Zbl 0802.35142
[5] and, The mathematical theory of finite element methods. Texts in Applied Mathematics, Springer-Verlag, New York (2002). | MR 1894376 | Zbl 0804.65101
[6] , Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Comm. Partial Differential Equations 19 (1994) 1371-1395. | Zbl 0811.35098
[7] and, Numerical studies of a non-stationary Ginzburg-Landau model for superconductivity. Adv. Math. Sci. Appl. 5 (1995) 363-389. | Zbl 0846.65051
[8] , and, Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 1075-1088. | Zbl 0816.34003
[9] and, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995) 1533-1589. | Zbl 0840.35010
[10] and, Hölder convergence of Ginzburg-Landau approximations to the harmonic map heat flow. Nonlinear Anal. 46 (2001) 807-816. | Zbl 1027.35125
[11] , and, Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34 (1992), 54-81 | Zbl 0787.65091
[12] , and, Finite element approximation of a periodic Ginzburg-Landau model for type- superconductors. Numer. Math. 64 (1993) 85-114. | Zbl 0792.65095
[13] W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Phys. D 77 (1994) 383-404. | Zbl 0814.34039
[14] , Partial differential equations. Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (1998). | MR 1625845 | Zbl 0902.35002
[15] and, Numerical analysis of the Cahn-Hilliard equation and approximation of the Hele-Shaw problem. Interfaces Free Bound. 7 (2005) 1-28. | Zbl 1072.35150
[16] and, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math. 94 (2003) 33-65. | Zbl 1029.65093
[17] and, Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comp. 73 (2004) 541-567. | MR 2028419 | Zbl 1115.76049
[18] and, On the theory of superconductivity. Zh. Èksper. Teoret. Fiz. 20 (1950) 1064-1082, in Men of Physics, L.D. Landau, D. ter Haar, Eds., Pergamon, Oxford (1965) 138-167.
[19] and, Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 427-440. | Numdam | Zbl 0836.34090
[20] ,, Finite element approximations of Landau-Ginzburg's equation model for structural phase transitions in shape memory alloys. RAIRO Modél. Math. Anal. Numér. 29 (1995) 629-655. | Numdam | Zbl 0929.65085
[21] and, Vortices and monopoles. Progress in Physics, Birkhäuser Boston, Inc., Boston, MA (1994). | MR 614447 | Zbl 0457.53034
[22] , and, A posteriori error control for the Allen-Cahn problem: circumventing Gronwall's inequality. Preprint (2003).
[23] and, Symmetry of the Ginzburg-Landau minimizer in a disc. Math. Res. Lett. 1 (1994) 701-715. | Zbl 0842.49014
[24] , Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension- submanifolds. Comm. Pure Appl. Math. 51 (1998) 385-441. | Zbl 0932.35121
[25] , Some dynamical properties of Ginzburg-Landau vortices. Comm. Pure Appl. Math. 49 (1996) 323-359. | Zbl 0853.35058
[26] , The dynamical law of Ginzburg-Landau vortices. Proc. of the Conference on Nonlinear Evolution Equations and Infinite-dimensional Dynamical Systems (Shanghai, 1995), World Sci. Publishing, River Edge, NJ (1997) 101-110. | Zbl 0972.35149
[27] and, Ginzburg-Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 28 (1997) 1265-1293. | Zbl 0888.35054
[28] , The stability of the radial solution to the Ginzburg-Landau equation. Comm. Partial Differential Equations 22 (1997) 619-632. | Zbl 0877.35018
[29] , Spectrum of the linearized operator for the Ginzburg-Landau equation. Electron. J. Differential Equations 42 (2000), 25 (electronic). | MR 1764706 | Zbl 0954.35119
[30] , On the stability of radial solutions of the Ginzburg-Landau equation. J. Funct. Anal. 130 (1995) 334-344. | Zbl 0839.35011
[31] , Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 593-598. | Zbl 0858.35038
[32] , and, Numerical methods for simulating Ginzburg-Landau vortices. SIAM J. Sci. Comput. 19 (1998) 1333-1339. | Zbl 0908.65121
[33] , Vortices in complex scalar fields. Phys. D 43 (1990) 385-406. | Zbl 0711.35024
[34] and, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (2000). | MR 1763040 | Zbl 0948.35003
[35] , Galerkin finite element methods for parabolic problems. Springer Series in Computational Mathematics, Springer-Verlag, Berlin (1997). | MR 1479170 | Zbl 0884.65097
[36] , A priori error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973) 723-759. | Zbl 0232.35060