A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows
Gerbeau, Jean-Frédéric ; Vidrascu, Marina
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003), p. 631-647 / Harvested from Numdam

We propose a quasi-Newton algorithm for solving fluid-structure interaction problems. The basic idea of the method is to build an approximate tangent operator which is cost effective and which takes into account the so-called added mass effect. Various test cases show that the method allows a significant reduction of the computational effort compared to relaxed fixed point algorithms. We present 2D and 3D fluid-structure simulations performed either with a simple 1D structure model or with shells in large displacements.

Publié le : 2003-01-01
DOI : https://doi.org/10.1051/m2an:2003049
Classification:  65M60,  74K25,  76D05,  76Z05
@article{M2AN_2003__37_4_631_0,
     author = {Gerbeau, Jean-Fr\'ed\'eric and Vidrascu, Marina},
     title = {A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {37},
     year = {2003},
     pages = {631-647},
     doi = {10.1051/m2an:2003049},
     mrnumber = {2018434},
     zbl = {1070.74047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2003__37_4_631_0}
}
Gerbeau, Jean-Frédéric; Vidrascu, Marina. A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) pp. 631-647. doi : 10.1051/m2an:2003049. http://gdmltest.u-ga.fr/item/M2AN_2003__37_4_631_0/

[1] K.J. Bathe, Finite Element Procedures. Prentice Hall (1996). | Zbl 0994.74001

[2] M. Bathe and R.D. Kamm, A fluid-structure interaction finite element analysis of pulsative blood flow through a compliant stenotic artery. J. Biomech. Engng. 121 (1999) 361-369.

[3] P.N. Brown and Y. Saad, Convergence theory of nonlinear Newton-Krylov algorithms. SIAM J. Optim. 4 (1994) 297-330. | Zbl 0814.65048

[4] D. Chapelle and K.J. Bathe, The Finite Element Analysis of Shells - Fundamentals. Springer Verlag (2003). | Zbl 1103.74003

[5] S. Deparis, M.A. Fernández, L. Formaggia and F. Nobile, Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions, in Second MIT Conference on Computational Fluid and Solid Mechanics, Elsevier (2003).

[6] J. Donéa, S. Giuliani and J.P. Halleux, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comp. Meth. Appl. Mech. Engng. (1982) 689-723. | Zbl 0508.73063

[7] M.A. Fernández and M. Moubachir, An exact block-newton algorithm for the solution of implicit time discretized coupled systems involved in fluid-structure interaction problems, in Second MIT Conference on Computational Fluid and Solid Mechanics, Elsevier (2003).

[8] L. Formaggia, J.-F. Gerbeau, F. Nobile and A. Quarteroni, On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comp. Meth. Appl. Mech. Engrg. 191 (2001) 561-582. | Zbl 1007.74035

[9] J.-F. Gerbeau, A quasi-newton method for a fluid-structure problem arising in blood flows, in Second MIT Conference on Computational Fluid and Solid Mechanics, Elsevier (2003).

[10] P. Le Tallec, Numerical methods for nonlinear three-dimensional elasticity, in Handbook of numerical analysis, Vol. III, North-Holland (1994) 465-622. | Zbl 0875.73234

[11] P. Le Tallec and J. Mouro, Fluid structure interaction with large structural displacements. Comput. Meth. Appl. Mech. Engrg. 190 (2001) 3039-3067. | Zbl 1001.74040

[12] X. Ma, G.C. Lee and S.G. Wu, Numerical simulation for the propagation of nonlinear pulsatile waves in arteries. Transactions of the ASME 114 (1992) 490-496.

[13] H.G. Matthies and J. Steindorf, Partitioned but strongly coupled iteration schemes for nonlinear fluid-structure interaction. preprint, 2000.

[14] H.G. Matthies and J. Steindorf, How to make weak coupling strong, in Computational Fluid and Solid Mechanics, K.J. Bathe Ed., Elsevier (2001) 1317-1319.

[15] D.P. Mok and W.A. Wall, Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures, in Trends in computational structural mechanics CIMNE, K. Schweizerhof, W.A. Wall and K.U. Bletzinger Eds., Barcelona (2001). | MR 2070766

[16] D.P. Mok, W.A. Wall and E. Ramm, Partitioned analysis approach for the transient, coupled response of viscous fluids and flexible structures, in Proceedings of the European Conference on Computational Mechanics. ECCM'99, W. Wunderlich Ed., TU Munich (1999).

[17] D.P. Mok, W.A. Wall and E. Ramm, Accelerated iterative substructuring schemes for instationary fluid-structure interaction, in Computational Fluid and Solid Mechanics, K.J. Bathe Ed., Elsevier (2001) 1325-1328.

[18] H. Morand and R. Ohayon, Interactions fluides-structures, Vol. 23 of Recherches en Mathématiques Appliquées. Masson, Paris (1992). | MR 1180076 | Zbl 0754.73071

[19] J. Mouro, Interactions fluide structure en grands déplacements. Résolution numérique et application aux composants hydrauliques automobiles. Ph.D. thesis, École Polytechnique, France (1996).

[20] F. Nobile, Numerical approximation of fluid-structure interaction problems with application to haemodynamics. Ph.D. thesis, EPFL, Switzerland (2001).

[21] M.S. Olufsen, Modeling the Arterial System with Reference to an Anesthesia Simulator. Ph.D. thesis, Roskilde University (1998).

[22] K. Perktold and G. Rappitsch, Mathematical modeling of local arterial flow and vessel mechanics, in Computational Methods for Fluid-Structure interaction, J. Crolet and R. Ohayon Eds., Pitman (1994). | MR 1424706 | Zbl 0809.76098

[23] K. Perktold and G. Rappitsch, Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28 (1995) 845-856.

[24] S. Piperno, Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations. Int. J. Numer. Method Fluid 25 (1997) 1207-1226. | Zbl 0910.76065

[25] A. Quarteroni, M. Tuveri and A. Veneziani, Computational Vascular Fluid Dynamics: Problems, Models and Methods. Comp. Vis. Sci. 2 (2000) 163-197. | Zbl 1096.76042

[26] Alfio Quarteroni and Alberto Valli, Domain decomposition methods for partial differential equations. Numerical Mathematics and Scientific Computation. The Clarendon Press Oxford University Press, Oxford Science Publication (1999). | MR 1857663 | Zbl 0931.65118

[27] K. Rhee and S.M. Lee, Effects of radial wall motion and flow waveform on the wall shear rate distribution in the divergent vascular graft. Ann. Biomed. Eng. (1998).

[28] S. Rugonyi and K.J. Bathe, On finite element analysis of fluid flows fully coupled with structural interactions. CMES 2 (2001).

[29] D. Tang, J. Yang, C. Yang and D.N. Ku, A nonlinear axisymmetric model with fluid-wall interactions for steady viscous flow in stenotic elastic tubes. J. Biomech. Engng. 121 (1999) 494-501.

[30] S.A. Urquiza, M.J. Venere, F.M. Clara and R.A. Feijóo, Finite element (one-dimensional) haemodynamic model of the human arterial system, in ECCOMAS, Barcelona (2000).

[31] H. Zhang and K.J. Bathe, Direct and iterative computing of fluid flows fully coupled with structures, in Computational Fluid and Solid Mechanics, K.J. Bathe Ed., Elsevier (2001) 1440-1443.