@article{M2AN_1986__20_3_403_0, author = {\v Cerm\'ak, Libor and Zl\'amal, Milo\v s}, title = {Finite element solution of a nonlinear diffusion problem with a moving boundary}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {20}, year = {1986}, pages = {403-426}, mrnumber = {862784}, zbl = {0605.65078}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1986__20_3_403_0} }
Čermák, Libor; Zlámal, Miloš. Finite element solution of a nonlinear diffusion problem with a moving boundary. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 20 (1986) pp. 403-426. http://gdmltest.u-ga.fr/item/M2AN_1986__20_3_403_0/
1 SUPRA-Stanford University Process Analysis Program, Stanford Electronics Laboratories Stanford University, Stanford, U S A , July 1981
, and ,2 Three-Level Galerkin Methods for Parabolic Equations SIAM J Numer Anal 11 (1974), 392 410 | MR 403259 | Zbl 0313.65107
, and ,3 A priori Estimates for the Solutions of Difference Approximations to Parabolic Differential Equations Duke Math J 27 (1960), 287-311 | MR 121998 | Zbl 0092.32803
,4 A Two-Dimensional Process Simulator for Modeling and Simulation in the Design of VLSI Devices Applied Physics A31 (1983), 119-138
, ,5 A Comprehensive Two-Dimensional VLSI Process Simulation Program BICEPS, IEEE Trans on Electron Devices 30 (1983), 986-992
,6 A priori error estimates for Galerkin approximations to parabolic partial differential equations SIAM J Numer Anal 10 (1973), 723-759 | MR 351124 | Zbl 0232.35060
,7 Curved Elements in the Finite Element Method I SIAM J Numer Anal 10 (1973), 229-240 | MR 395263 | Zbl 0285.65067
,8 On the Finite Element Method Numer Math 12 (1968), 394-409 | MR 243753 | Zbl 0176.16001
,9 Finite Element Methods for Nonlinear Parabolic Equations R A I R O Anal Numer 11 (1977), 93-107 | Numdam | MR 502073 | Zbl 0385.65049
,