From Vlasov–Poisson and Vlasov–Poisson–Fokker–Planck systems to incompressible Euler equations: the case with finite charge
[Des équations de Vlasov-Poisson et Vlasov-Poisson-Fokker-Planck aux équations d’Euler incompressibles : le cas de charge finie]
Barré, Julien ; Chiron, David ; Goudon, Thierry ; Masmoudi, Nader
Journal de l'École polytechnique - Mathématiques, Tome 2 (2015), p. 247-296 / Harvested from Numdam

Nous étudions le régime asymptotique de forts champs électriques qui conduit du système de Vlasov-Poisson aux équations d’Euler incompressibles. Nous abordons aussi le système de Vlasov-Poisson-Fokker-Planck qui induit des effets dissipatifs additionnels. L’originalité de cette étude réside dans le fait qu’on suppose la charge totale finie et confinée par un fort champ extérieur. En conséquence, l’équation limite est posée dans un domaine borné dont la géométrie est déterminée par ce champ confinant. L’analyse s’étend au cas où la densité limite est inhomogène ; l’équation d’Euler est alors remplacée par l’équation des lacs (ou modèle anélastique).

We study the asymptotic regime of strong electric fields that leads from the Vlasov–Poisson system to the Incompressible Euler equations. We also deal with the Vlasov–Poisson–Fokker–Planck system which induces dissipative effects. The originality consists in considering a situation with a finite total charge confined by a strong external field. In turn, the limiting equation is set in a bounded domain, the shape of which is determined by the external confining potential. The analysis extends to the situation where the limiting density is non–homogeneous and where the Euler equation is replaced by the Lake Equation, also called Anelastic Equation.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/jep.24
Classification:  82D10,  35Q35,  82C40
Mots clés: Physique des plasmas, système de Vlasov-Poisson, système de Vlasov-Poisson-Fokker-Planck, équations d’Euler incompressibles, équation des lacs, régime quasi-neutre, énergie modulée, entropie relative
@article{JEP_2015__2__247_0,
     author = {Barr\'e, Julien and Chiron, David and Goudon, Thierry and Masmoudi, Nader},
     title = {From Vlasov--Poisson and Vlasov--Poisson--Fokker--Planck systems to incompressible Euler equations: the~case~with finite charge},
     journal = {Journal de l'\'Ecole polytechnique - Math\'ematiques},
     volume = {2},
     year = {2015},
     pages = {247-296},
     doi = {10.5802/jep.24},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEP_2015__2__247_0}
}
Barré, Julien; Chiron, David; Goudon, Thierry; Masmoudi, Nader. From Vlasov–Poisson and Vlasov–Poisson–Fokker–Planck systems to incompressible Euler equations: the case with finite charge. Journal de l'École polytechnique - Mathématiques, Tome 2 (2015) pp. 247-296. doi : 10.5802/jep.24. http://gdmltest.u-ga.fr/item/JEP_2015__2__247_0/

[1] Arsenev, A. A. Global existence of a weak solution of Vlasov’s system of equations, U.S.S.R. Comput. Math. and Math. Phys., Tome 15 (1975), pp. 131-143 | MR 371322 | Zbl 0302.35009

[2] Ben Arous, G.; Guionnet, A. Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy, Probab. Theory Relat. Fields, Tome 108 (1997) no. 4, pp. 517-542 | MR 1465640 | Zbl 0954.60029

[3] Bouchut, F. Existence and uniqueness of a global smooth solution for the VPFP system in three dimensions, J. Funct. Anal., Tome 111 (1993), pp. 239-258 | MR 1200643 | Zbl 0777.35059

[4] Brenier, Y. A homogenized model for vortex sheets, Arch. Rational Mech. Anal., Tome 138 (1997) no. 4, pp. 319-353 | MR 1467558 | Zbl 0962.35140

[5] Brenier, Y. Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, Tome 25 (2000) no. 3-4, pp. 737-754 | MR 1748352 | Zbl 0970.35110

[6] Caffarelli, L. The obstacle problem revisited, J. Fourier Anal. Appl., Tome 4 (1998) no. 3&4, pp. 383-402 | MR 1658612 | Zbl 0928.49030

[7] Camara, A.; Kaiser, R.; Labeyrie, G. Behavior of a very large magneto-optical trap, Phys. Rev. A, Tome 90 (2014) no. 6, pp. 063404

[8] Chafaï, D.; Gozlan, N.; Zitt, P-A. First order asymptotics for confined particles with singular pair repulsions, Ann. Appl. Probab., Tome 24 (2014) no. 6, pp. 2371-2413 | MR 3262506 | Zbl 1304.82050

[9] Chen, G.-Q.; Frid, H. Extended Divergence-Measure Fields and the Euler Equations for Gas Dynamics, Comm. Math. Phys., Tome 236 (2003), pp. 251-280 | MR 1981992 | Zbl 1036.35125

[10] Dalibard, J. Laser cooling of an optically thick gas: The simplest radiation pressure trap?, Optics Comm., Tome 68 (1988), pp. 203-208

[11] Dalibard, J.; Cohen-Tannoudji, C. Atomic motion in laser light: connection between semiclassical and quantum descriptions, J. Phys. B, Tome 18 (1985) no. 8, pp. 1661 | MR 789707

[12] Degond, P. Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimension, Ann. Sci. École Norm. Sup. (4), Tome 19 (1986), pp. 519-542 | Numdam | MR 875086 | Zbl 0619.35087

[13] Dolbeault, J. Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (Large time behavior and steady states), J. Math. Pures Appl., Tome 78 (1999) no. 2, pp. 121-157 | MR 1677677 | Zbl 1115.82316

[14] Dubin, D.H.E.; O’Neil, T.M. Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states), Rev. Modern Phys., Tome 71 (1999) no. 1, pp. 87-172

[15] Frehse, J. On the regularity of the solution of a second order variational inequality, Boll. Un. Mat. Ital. (4), Tome 6 (1972), pp. 312-315 | MR 318650 | Zbl 0261.49021

[16] Friedman, A. Variational principles and free-boundary problems, John Wiley & Sons, Inc., New York, Pure and Applied Math. (1982), pp. ix+710 (A Wiley-Interscience Publication) | MR 679313 | Zbl 0564.49002 | Zbl 0671.49001

[17] Friedman, A.; Phillips, D. The free boundary of a semilinear elliptic equation, Trans. Amer. Math. Soc., Tome 282 (1984) no. 1, pp. 153-182 | MR 728708 | Zbl 0552.35079

[18] Frostman, O. Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddelanden Mat. Sem. Univ. Lund, Tome 3 (1935), pp. 1-118 | JFM 61.1262.02

[19] Furman, M. A. Compact complex expressions for the electric field of two-dimensional elliptical charge distributions, Amer. J. Phys., Tome 62 (12) (1994), pp. 1134-1140

[20] Glassey, R. T. The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1996) | MR 1379589 | Zbl 0858.76001

[21] Grenier, E. Defect measures of the Vlasov-Poisson system in the quasineutral regime, Comm. Partial Differential Equations, Tome 20 (1995) no. 7-8, pp. 1189-1215 | Article | MR 1335748 | Zbl 0828.35106

[22] Grenier, E. Oscillations in quasineutral plasmas, Comm. Partial Differential Equations, Tome 21 (1996) no. 3-4, pp. 363-394 | Article | MR 1387452 | Zbl 0849.35107

[23] Han-Kwan, D. Quasineutral limit of the Vlasov-Poisson system with massless electrons, Comm. Partial Differential Equations, Tome 36 (2011) no. 8, pp. 1385-1425 | Article | MR 2825596 | Zbl 1228.35251

[24] Han-Kwan, D.; Hauray, M. Stability issues in the quasineutral limit of the one-dimensional Vlasov-Poisson equation, Comm. Math. Phys., Tome 334 (2015) no. 2, pp. 1101-1152 | Article | MR 3306612 | Zbl 1309.35173

[25] Han-Kwan, D.; Iacobelli, M. Quasineutral limit for Vlasov–Poisson via Wasserstein stability estimates in higher dimension (2015) (Preprint École polytechnique, arXiv:1503.06097) | MR 3631299

[26] Hedenmalm, H.; Makarov, N. Coulomb gas ensembles and Laplacian growth, Proc. London Math. Soc. (3), Tome 106 (2013) no. 4, pp. 859-907 | MR 3056295 | Zbl 1336.82010

[27] Kato, T.; Mitrea, M.; Ponce, G.; Taylor, M. Extension and representation of divergence-free vector fields, Math. Res. Lett., Tome 7 (2000), pp. 643-650 | MR 1809290 | Zbl 0980.53022

[28] Kellogg, O. D. Foundations of potential theory, Springer-Verlag, Berlin, New York, Grundlehren Math. Wiss., Tome 31 (1967), pp. ix+384 (Reprint from the first edition of 1929) | MR 222317 | Zbl 0152.31301

[29] Kinderlehrer, D.; Nirenberg, L. Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Tome 4 (1977) no. 2, pp. 373-391 | Numdam | MR 440187 | Zbl 0352.35023

[30] Kinderlehrer, D.; Stampacchia, G. An introduction to variational inequalities and their applications, Academic Press, Inc., New York, London, Pure and Applied Math., Tome 88 (1980), pp. xiv+313 | MR 567696 | Zbl 0457.35001 | Zbl 0988.49003

[31] Levermore, C. D.; Oliver, M.; Titi, E. S. Global well-posedness for models of shallow water in a basin with a varying bottom, Indiana Univ. Math. J., Tome 45 (1996) no. 2, pp. 479-510 | MR 1414339 | Zbl 0953.76011

[32] Levermore, C. D.; Oliver, M.; Titi, E. S. Global Well-Posedness for the Lake Equations, Phys. D, Tome 98 (1996) no. 2-4, pp. 492-509 | Zbl 0885.35093

[33] Lions, J.-L.; Magenes, E. Problèmes aux limites non homogènes et applications (Volume 1), Dunod, Paris, Travaux et recherches mathématiques (1968) | MR 247243 | Zbl 0165.10801

[34] Lions, P.-L.; Perthame, B. Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system, Invent. Math., Tome 105 (1991), pp. 415-430 | MR 1115549 | Zbl 0741.35061

[35] Masmoudi, N. From Vlasov-Poisson system to the incompressible Euler system, Comm. Partial Differential Equations, Tome 26 (2001) no. 9-10, pp. 1913-1928 | MR 1865949 | Zbl 1083.35116

[36] Masmoudi, N. Rigorous derivation of the anelastic approximation, J. Math. Pures Appl., Tome 88 (2007) no. 3, pp. 230-240 | MR 2355456 | Zbl 1157.35081

[37] Mendonça, J.T.; Kaiser, R.; Terças, H.; Loureiro, J. Collective oscillations in ultra-cold atomic gas, Phys. Rev. A, Tome 78 (2008) no. 1, pp. 013408

[38] Ogura, Y.; Phillips, N. Scale analysis for deep and shallow convection in the atmosphere, J. Atmospheric Sci., Tome 19 (1962), pp. 173-179

[39] Oliver, M. Classical solutions for a generalized Euler equation in two dimensions, J. Math. Anal. Appl., Tome 215 (1997) no. 2, pp. 471-484 | MR 1490763 | Zbl 0893.35107

[40] Olivetti, A. Effets collectifs et particules en interaction : des systèmes à longue portée aux atomes froids, Univ. Nice Sophia Antipolis (2011) (Ph. D. Thesis)

[41] Pfaffelmoser, K. Global existence of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations, Tome 95 (1992), pp. 281-303 | MR 1165424 | Zbl 0810.35089

[42] Saff, E.B.; Totik, V. Logarithmic potentials with external fields, Springer, Berlin, Grundlehren Math. Wiss. (1997) | MR 1485778 | Zbl 0881.31001

[43] Serfaty, S. Coulomb Gases and Ginzburg–Landau Vortices (2014) (Lecture Notes of the “nachdiplom vorleisung” course, ETH Zürich, Forschungsinstitut für Mathematik) | MR 3309890

[44] Temam, R. On the Euler equations of incompressible perfect fluids, J. Functional Analysis, Tome 20 (1975) no. 1, pp. 32-43 | MR 430568 | Zbl 0309.35061

[45] Temam, R. Local existence of C solutions of the Euler equations of incompressible perfect fluids, Turbulence and Navier-Stokes equations (Orsay, 1975), Springer, Berlin (Lect. Notes in Math.) Tome 565 (1976), pp. 184-194 | MR 467033 | Zbl 0355.76017

[46] Walker, T.; Sesko, D.; Wieman, C. Collective behavior of optically trapped neutral atoms, Phys. Rev. Lett., Tome 64 (1990), pp. 408-412

[47] Wineland, D.J.; Bollinger, J.J.; Itano, W.M.; Prestage, J.D. Angular momentum of trapped atomic particles, J. Opt. Soc. Amer., Tome 2 (1985) no. 11, pp. 1721-1730