Space-modulated stability and averaged dynamics
Rodrigues, Luis Miguel
Journées équations aux dérivées partielles, (2015), p. 1-15 / Harvested from Numdam

In this brief note we give a brief overview of the comprehensive theory, recently obtained by the author jointly with Johnson, Noble and Zumbrun, that describes the nonlinear dynamics about spectrally stable periodic waves of parabolic systems and announce parallel results for the linearized dynamics near cnoidal waves of the Korteweg–de Vries equation. The latter are expected to contribute to the development of a dispersive theory, still to come.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/jedp.637
Classification:  35B10,  35B35,  35K59,  35P05,  35Q53,  37K45
@article{JEDP_2015____A8_0,
     author = {Rodrigues, Luis Miguel},
     title = {Space-modulated stability and averaged dynamics},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2015},
     pages = {1-15},
     doi = {10.5802/jedp.637},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2015____A8_0}
}
Rodrigues, Luis Miguel. Space-modulated stability and averaged dynamics. Journées équations aux dérivées partielles,  (2015), pp. 1-15. doi : 10.5802/jedp.637. http://gdmltest.u-ga.fr/item/JEDP_2015____A8_0/

[1] Angulo Pava, Jaime Nonlinear dispersive equations, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 156 (2009), pp. xii+256 (Existence and stability of solitary and periodic travelling wave solutions) | MR 2567568 | Zbl 1202.35246

[2] Barker, Blake Numerical proof of stability of roll waves in the small-amplitude limit for inclined thin film flow, J. Differential Equations, Tome 257 (2014) no. 8, pp. 2950-2983 | Article | MR 3249277 | Zbl 1300.35121

[3] Barker, Blake; Johnson, Mathew A.; Noble, Pascal; Rodrigues, L. Miguel; Zumbrun, Kevin Note on the stability of viscous roll-waves (Submitted)

[4] Barker, Blake; Johnson, Mathew A.; Noble, Pascal; Rodrigues, L. Miguel; Zumbrun, Kevin Stability of St. Venant roll-waves: from onset to the large-Froude number limit (Submitted)

[5] Benzoni-Gavage, Sylvie; Mietka, Colin; Rodrigues, L. Miguel Co-periodic stability of periodic waves in some Hamiltonian PDEs (Submitted)

[6] Benzoni-Gavage, Sylvie; Noble, Pascal; Rodrigues, L. Miguel Slow modulations of periodic waves in Hamiltonian PDEs, with application to capillary fluids, J. Nonlinear Sci., Tome 24 (2014) no. 4, pp. 711-768 | Article | MR 3228473

[7] Bottman, Nate; Deconinck, Bernard KdV cnoidal waves are spectrally stable, Discrete Contin. Dyn. Syst., Tome 25 (2009) no. 4, pp. 1163-1180 | Article | MR 2552133 | Zbl 1178.35327

[8] Gardner, Robert A. Spectral analysis of long wavelength periodic waves and applications, J. Reine Angew. Math., Tome 491 (1997), pp. 149-181 | Article | MR 1476091 | Zbl 0883.35055

[9] Gohberg, Israel; Goldberg, Seymour; Kaashoek, Marinus A. Classes of linear operators. Vol. I, Birkhäuser Verlag, Basel, Operator Theory: Advances and Applications, Tome 49 (1990), pp. xiv+468 | Article | MR 1130394 | Zbl 0745.47002

[10] Henry, Daniel Geometric theory of semilinear parabolic equations, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 840 (1981), pp. iv+348 | MR 610244 | Zbl 0456.35001

[11] Johnson, Mathew A.; Noble, Pascal; Rodrigues, L. Miguel; Zumbrun, Kevin Nonlocalized modulation of periodic reaction diffusion waves: nonlinear stability, Arch. Ration. Mech. Anal., Tome 207 (2013) no. 2, pp. 693-715 | MR 3005327 | Zbl 1276.35031

[12] Johnson, Mathew A.; Noble, Pascal; Rodrigues, L. Miguel; Zumbrun, Kevin Nonlocalized modulation of periodic reaction diffusion waves: the Whitham equation, Arch. Ration. Mech. Anal., Tome 207 (2013) no. 2, pp. 669-692 | MR 3005326 | Zbl 1270.35106

[13] Johnson, Mathew A.; Noble, Pascal; Rodrigues, L. Miguel; Zumbrun, Kevin Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations, Invent. Math., Tome 197 (2014) no. 1, pp. 115-213 | Article | MR 3219516 | Zbl 1304.35192

[14] Johnson, Mathew A.; Zumbrun, Kevin Nonlinear stability of periodic traveling wave solutions of systems of viscous conservation laws in the generic case, J. Differential Equations, Tome 249 (2010) no. 5, pp. 1213-1240 | MR 2652171 | Zbl 1198.35027

[15] Johnson, Mathew A.; Zumbrun, Kevin Nonlinear stability of periodic traveling-wave solutions of viscous conservation laws in dimensions one and two, SIAM J. Appl. Dyn. Syst., Tome 10 (2011) no. 1, pp. 189-211 | MR 2788923 | Zbl 1221.35055

[16] Jung, Soyeun Pointwise asymptotic behavior of modulated periodic reaction-diffusion waves, J. Differential Equations, Tome 253 (2012) no. 6, pp. 1807-1861 | Article | MR 2943944 | Zbl 1268.35015

[17] Jung, Soyeun Pointwise stability estimates for periodic traveling wave solutions of systems of viscous conservation laws, J. Differential Equations, Tome 256 (2014) no. 7, pp. 2261-2306 | Article | MR 3160443 | Zbl 1288.35078

[18] Kabil, Buğra; Rodrigues, L. Miguel Spectral validation of the Whitham equations for periodic waves of lattice dynamical systems, J. Differential Equations, Tome 260 (2016) no. 3, pp. 2994-3028 | Article | MR 3427688

[19] Kapitula, Todd; Promislow, Keith Spectral and dynamical stability of nonlinear waves, Springer, New York, Applied Mathematical Sciences, Tome 185 (2013), pp. xiv+361 (With a foreword by Christopher K. R. T. Jones) | Article | MR 3100266 | Zbl 1297.37001

[20] Keldyš, M. V. On the characteristic values and characteristic functions of certain classes of non-self-adjoint equations, Doklady Akad. Nauk SSSR (N.S.), Tome 77 (1951), pp. 11-14 | MR 41353

[21] Keldyš, M. V. The completeness of eigenfunctions of certain classes of nonselfadjoint linear operators, Uspehi Mat. Nauk, Tome 26 (1971) no. 4(160), pp. 15-41 | MR 300125 | Zbl 0225.47008

[22] Liu, Tai-Ping; Zeng, Yanni Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem. Amer. Math. Soc., Tome 125 (1997) no. 599, pp. viii+120 | MR 1357824 | Zbl 0884.35073

[23] Markus, A. S. Introduction to the spectral theory of polynomial operator pencils, American Mathematical Society, Providence, RI, Translations of Mathematical Monographs, Tome 71 (1988), pp. iv+250 (Translated from the Russian by H. H. McFaden, Translation edited by Ben Silver, With an appendix by M. V. Keldyš) | MR 971506 | Zbl 0678.47005

[24] Van Neerven, Jan The asymptotic behaviour of semigroups of linear operators, Birkhäuser Verlag, Basel, Operator Theory: Advances and Applications, Tome 88 (1996), pp. xii+237 | Article | MR 1409370 | Zbl 0905.47001

[25] Noble, Pascal; Rodrigues, L. Miguel Whitham’s modulation equations and stability of periodic wave solutions of the Korteweg-de Vries-Kuramoto-Sivashinsky equation, Indiana Univ. Math. J., Tome 62 (2013) no. 3, pp. 753-783 | Article | MR 3164843 | Zbl 1296.35161

[26] Oh, Myunghyun; Zumbrun, Kevin Low-frequency stability analysis of periodic traveling-wave solutions of viscous conservation laws in several dimensions, Z. Anal. Anwend., Tome 25 (2006) no. 1, pp. 1-21 | MR 2215999 | Zbl 1099.35014

[27] Oh, Myunghyun; Zumbrun, Kevin Erratum to: Stability and asymptotic behavior of periodic traveling wave solutions of viscous conservation laws in several dimensions, Arch. Ration. Mech. Anal., Tome 196 (2010) no. 1, pp. 21-23 | MR 2601068 | Zbl 1197.35075

[28] Oh, Myunghyun; Zumbrun, Kevin Stability and asymptotic behavior of periodic traveling wave solutions of viscous conservation laws in several dimensions, Arch. Ration. Mech. Anal., Tome 196 (2010) no. 1, pp. 1-20 | MR 2601067 | Zbl 1197.35075

[29] Rodrigues, L. Miguel Linear asymptotic stability and modulation behavior near periodic waves of the Korteweg–de Vries equation (forthcoming)

[30] Rodrigues, L. Miguel Vortex-like finite-energy asymptotic profiles for isentropic compressible flows, Indiana Univ. Math. J., Tome 58 (2009) no. 4, pp. 1747-1776 | Article | MR 2542978 | Zbl 1170.76046

[31] Rodrigues, L. Miguel Asymptotic stability and modulation of periodic wavetrains, general theory & applications to thin film flows, Université Lyon 1 (2013) (Habilitation à Diriger des Recherches)

[32] Rodrigues, L. Miguel; Zumbrun, Kevin Periodic-Coefficient Damping Estimates, and Stability of Large-Amplitude Roll Waves in Inclined Thin Film Flow, SIAM J. Math. Anal., Tome 48 (2016) no. 1, pp. 268-280 | Article

[33] Sandstede, Björn; Scheel, Arnd; Schneider, Guido; Uecker, Hannes Diffusive mixing of periodic wave trains in reaction-diffusion systems, J. Differential Equations, Tome 252 (2012) no. 5, pp. 3541-3574 | Article | MR 2876664 | Zbl 1298.35108

[34] Schneider, Guido Diffusive stability of spatial periodic solutions of the Swift-Hohenberg equation, Comm. Math. Phys., Tome 178 (1996) no. 3, pp. 679-702 | MR 1395210 | Zbl 0861.35107

[35] Schneider, Guido Nonlinear diffusive stability of spatially periodic solutions—abstract theorem and higher space dimensions, Proceedings of the International Conference on Asymptotics in Nonlinear Diffusive Systems (Sendai, 1997), Tohoku Univ., Sendai (Tohoku Math. Publ.) Tome 8 (1998), pp. 159-167 | MR 1617491 | Zbl 0907.35015

[36] Serre, Denis Spectral stability of periodic solutions of viscous conservation laws: large wavelength analysis, Comm. Partial Differential Equations, Tome 30 (2005) no. 1-3, pp. 259-282 | Article | MR 2131054 | Zbl 1131.35046

[37] Whitham, Gerald B. Linear and nonlinear waves, Wiley-Interscience [John Wiley & Sons], New York (1974), pp. xvi+636 (Pure and Applied Mathematics) | MR 483954 | Zbl 0940.76002

[38] Yakubov, Sasun Completeness of root functions of regular differential operators, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, Pitman Monographs and Surveys in Pure and Applied Mathematics, Tome 71 (1994), pp. x+245 | MR 1401350 | Zbl 0833.34081