Numerical resolution of Euler equations through semi-discrete optimal transport
Mirebeau, Jean-Marie
Journées équations aux dérivées partielles, (2015), p. 1-16 / Harvested from Numdam

Geodesics along the group of volume preserving diffeomorphisms are solutions to Euler equations of inviscid incompressible fluids, as observed by Arnold [4]. On the other hand, the projection onto volume preserving maps amounts to an optimal transport problem, as follows from the generalized polar decomposition of Brenier [14].

We present, in the first section, the framework of semi-discrete optimal transport, initially developed for the study of generalized solutions to optimal transport [1] and now regarded as an efficient approach to computational optimal transport. In a second and largely independent section, we present numerical approaches for Euler equations seen as a boundary value problem [16, 7, 33]: knowing the initial and final positions of some fluid particles, reconstruct intermediate fluid states. Depending on the data, we either recover a classical solution to Euler equations, or a generalized flow [15] for which the fluid particles motion is non-deterministic, as predicted by [39].

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/jedp.636
@article{JEDP_2015____A7_0,
     author = {Mirebeau, Jean-Marie},
     title = {Numerical resolution of Euler equations  through semi-discrete optimal transport},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2015},
     pages = {1-16},
     doi = {10.5802/jedp.636},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2015____A7_0}
}
Mirebeau, Jean-Marie. Numerical resolution of Euler equations  through semi-discrete optimal transport. Journées équations aux dérivées partielles,  (2015), pp. 1-16. doi : 10.5802/jedp.636. http://gdmltest.u-ga.fr/item/JEDP_2015____A7_0/

[1] Abgrall, R Construction of Simple, Stable, and Convergent High Order Schemes for Steady First Order Hamilton–Jacobi Equations, SIAM Journal on Scientific Computing, Tome 31 (2009) no. 4, pp. 2419-2446 | MR 2520283 | Zbl 1197.65167

[2] Aguilera, N E; Morin, P On Convex Functions and the Finite Element Method, SIAM Journal on Numerical Analysis, Tome 47 (2009) no. 4, pp. 3139-3157 | MR 2551161 | Zbl 1204.65076

[3] Ambrosio, L; Figalli, A On the regularity of the pressure field of Brenier’s weak solutions to incompressible Euler equations, Calculus of Variations and Partial Differential Equations, Tome 31 (2007) no. 4, pp. 497-509 | MR 2372903 | Zbl 1138.49031

[4] Arnold, V Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Annales de l’institut Fourier, Tome 16 (1966) no. 1, pp. 319-361 | Numdam | MR 202082 | Zbl 0148.45301

[5] Aurenhammer, F; Hoffmann, F; Aronov, B Minkowski-Type Theorems and Least-Squares Clustering, Algorithmica, Tome 20 (1998) no. 1, pp. 61-76 | MR 1483422 | Zbl 0895.68135

[6] Benamou, J D; Brenier, Y; Guittet, K The Monge-Kantorovitch mass transfer and its computational fluid mechanics formulation, International Journal for Numerical Methods in Fluids, Tome 40 (2002) no. 1-2, pp. 21-30 | MR 1928314 | Zbl 1058.76586

[7] Benamou, J D; Carlier, G; Cuturi, M; Peyré, G; Nenna, L Iterative Bregman projections for regularized transportation problems, Sci. Comp (2015) | MR 3340204

[8] Benamou, J-D; Collino, F; Mirebeau, J-M Monotone and Consistent discretization of the Monge-Ampere operator, Mathematics of computation (2015)

[9] Benamou, J-D; Froese, B D; Oberman, A M Two numerical methods for the elliptic Monge-Ampere equation, M2AN. Mathematical Modelling and Numerical Analysis, Tome 44 (2010) no. 4, pp. 737-758 | Numdam | MR 2683581 | Zbl 1192.65138

[10] Benamou, J-D; Froese, B D; Oberman, A M Numerical solution of the Optimal Transportation problem using the Monge–Ampère equation, Journal of Computational Physics, Tome 260 (2014), pp. 107-126 | MR 3151832

[11] Bernot, M; Figalli, A; Santambrogio, F Generalized solutions for the Euler equations in one and two dimensions, Journal de Mathématiques Pures et Appliquées, Tome 91 (2009) no. 2, pp. 137-155 | MR 2498752 | Zbl 1170.35078

[12] Brenier, Y A combinatorial algorithm for the Euler equations of incompressible flows, Proceedings of the Eighth International Conference on Computing Methods in Applied Sciences and Engineering (Versailles, 1987) (1989), pp. 325-332 | MR 1035755 | Zbl 0687.76016

[13] Brenier, Y The least action principle and the related concept of generalized flows for incompressible perfect fluids, Journal of the American Mathematical Society, Tome 2 (1989) no. 2, pp. 225-255 | MR 969419 | Zbl 0697.76030

[14] Brenier, Y Polar factorization and monotone rearrangement of vector-valued functions, Communications on Pure and Applied Mathematics, Tome 44 (1991) no. 4, pp. 375-417 | MR 1100809 | Zbl 0738.46011

[15] Brenier, Y The dual least action principle for an ideal, incompressible fluid , Archive for rational mechanics and analysis (1993)

[16] Brenier, Y Generalized solutions and hydrostatic approximation of the Euler equations, Physica D: Nonlinear Phenomena (2008) | MR 2449787 | Zbl 1143.76386

[17] Bruveris, M; Vialard, François X On Completeness of Groups of Diffeomorphisms (2014) (http://arxiv.org/abs/1403.2089)

[18] Carverhill, A; Pedit, F J Global solutions of the Navier-Stokes equation with strong viscosity, Annals of Global Analysis and Geometry, Tome 10 (1992) no. 3, pp. 255-261 | MR 1186014 | Zbl 0766.58011

[19] Cgal (http://www.cgal.org/)

[20] De Castro, P M M; Merigot, Q; Thibert, B Intersection of paraboloids and application to Minkowski-type problems, Computational geometry (SoCG’14), ACM, New York (2014), pp. 308-317 | MR 3382311

[21] De Goes, F; Breeden, K; Ostromoukhov, V; Desbrun, M Blue noise through optimal transport, ACM Transactions on Graphics (TOG), Tome 31 (2012) no. 6, pp. 171

[22] De Goes, F; Wallez, C; Huang, J; Zhejiang, U; Pavlov, D Power Particles: An incompressible fluid solver based on power diagrams (2015) (geometry.caltech.edu)

[23] De Lellis, C; Székelyhidi Jr, L The Euler equations as a differential inclusion, Annals of mathematics (2009)

[24] Euler, L Theoria Motus Corporum Solidorum Seu Rigidorum (1765)

[25] Figalli, A; Daneri, S Variational models for the incompressible Euler equations, HCDTE Lecture Notes, Part II (2012) | MR 3340994

[26] Froese, B D; Oberman, A M Convergent Finite Difference Solvers for Viscosity Solutions of the Elliptic Monge–Ampère Equation in Dimensions Two and Higher, SIAM Journal on Numerical Analysis, Tome 49 (2011) no. 4, pp. 1692-1714 | MR 2831067 | Zbl 1255.65195

[27] Kantorovich, L V Kantorovich: On the transfer of masses, Dokl. Akad. Nauk. SSSR (1942)

[28] Kuo, H-J; Trudinger, N S Discrete Methods for Fully Nonlinear Elliptic Equations, SIAM Journal on Numerical Analysis, Tome 29 (1992) no. 1, pp. 123-135 | MR 1149088 | Zbl 0745.65058

[29] Lévy, B A numerical algorithm for L 2 semi-discrete optimal transport in 3D (2014) (http://arxiv.org/abs/1409.1279v1)

[30] Loeper, G; Rapetti, F Numerical solution of the Monge-Ampère equation by a Newton’s algorithm, Comptes Rendus Mathématique. Académie des Sciences. Paris, Tome 340 (2005) no. 4, pp. 319-324 | MR 2121899 | Zbl 1067.65119

[31] Ma, X-N; Trudinger, N S; Wang, X-J Regularity of Potential Functions of the Optimal Transportation Problem, Archive for rational mechanics and analysis, Tome 177 (2005) no. 2, pp. 151-183 | MR 2188047 | Zbl 1072.49035

[32] Merigot, Q A Multiscale Approach to Optimal Transport, Computer Graphics Forum, Tome 30 (2011) no. 5, pp. 1583-1592

[33] Merigot, Q; Mirebeau, J-M Minimal geodesics along volume preserving maps, through semi-discrete optimal transport (2015) (http://arxiv.org/abs/1505.03306)

[34] Merigot, Q; Oudet, E Handling convexity-like constraints in variational problems, SIAM Journal on Numerical Analysis, Tome 52 (2014) no. 5, pp. 2466-2487 | MR 3268615

[35] Mirebeau, J-M Adaptive, anisotropic and hierarchical cones of discrete convex functions, Numerische Mathematik (2015), pp. 1-47

[36] Oberman, A M; Ruan, Y An efficient linear programming method for Optimal Transportation (2015) (http://arxiv.org/abs/1509.03668)

[37] Oliker, V I; Prussner, L D On the numerical solution of the equation 2 z x 2 2 z y 2 - 2 z xy 2 =f and its discretizations, I, Numerische Mathematik, Tome 54 (1989) no. 3, pp. 271-293 | MR 971703 | Zbl 0659.65116

[38] Schmitzer, B A sparse algorithm for dense optimal transport, Scale Space and Variational Methods in Computer Vision, Springer International Publishing, Cham (2015), pp. 629-641

[39] Shnirelman, A I Generalized fluid flows, their approximation and applications, Geometric and Functional Analysis, Tome 4 (1994) no. 5, pp. 586-620 | MR 1296569 | Zbl 0851.76003

[40] Villani, C Optimal transport: Old and new, Springer-Verlag, Berlin (2009), pp. xxii+973 | Article | MR 2459454 | Zbl 1156.53003