The Calderón problem with partial data
Sjöstrand, Johannes
Journées équations aux dérivées partielles, (2004), p. 1-9 / Harvested from Numdam

Nous décrivons un travail avec C.E. Kenig and G. Uhlmann [9] dans lequel nous améliorons un résultat de Bukhgeim and Uhlmann [1], en montrant qu’en dimension n3, la connaissance des données de Cauchy pour l’équation de Schrödinger sur des sous-ensembles possiblement très petits du bord détermine le potential de manière unique. Nous suivons la stratégie générale de [1] mais nous utilisons un ensemble plus riche de solutions du problème de Dirichlet.

We describe a joint work with C.E. Kenig and G. Uhlmann [9] where we improve an earlier result by Bukhgeim and Uhlmann [1], by showing that in dimension n3, the knowledge of the Cauchy data for the Schrödinger equation measured on possibly very small subsets of the boundary determines uniquely the potential. We follow the general strategy of [1] but use a richer set of solutions to the Dirichlet problem.

Publié le : 2004-01-01
DOI : https://doi.org/10.5802/jedp.9
Classification:  35R30
@article{JEDP_2004____A9_0,
     author = {Sj\"ostrand, Johannes},
     title = {The Calder\'on problem with partial data},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2004},
     pages = {1-9},
     doi = {10.5802/jedp.9},
     mrnumber = {2135364},
     zbl = {1152.35518},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2004____A9_0}
}
Sjöstrand, Johannes. The Calderón problem with partial data. Journées équations aux dérivées partielles,  (2004), pp. 1-9. doi : 10.5802/jedp.9. http://gdmltest.u-ga.fr/item/JEDP_2004____A9_0/

[1] A. L. Bukhgeim, G. Uhlmann, Recovering a potential from partial Cauchy data, Comm. PDE, 27(3,4)(2002), 653–668. | MR 1900557 | Zbl 0998.35063

[2] N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonances au voisinage du réel, Acta Math. 180(1)(1998), 1–29. | MR 1618254 | Zbl 0918.35081

[3] A. P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, (1980), 65-73. | MR 590275

[4] M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268. Cambridge University Press, Cambridge, 1999. | MR 1735654 | Zbl 0926.35002

[5] J.J. Duistermaat, L. Hörmander, Fourier integral operators II, Acta Mathematica 128(1972), 183-269. | MR 388464 | Zbl 0232.47055

[6] A. Greenleaf and G. Uhlmann, Local uniqueness for the Dirichlet-to-Neumann map via the two-plane transform, Duke Math. J. 108(2001), 599-617. | MR 1838663 | Zbl 1013.35085

[7] L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math. 24(1971), 671–704. | MR 294849 | Zbl 0226.35019

[8] H. Isozaki and G. Uhlmann, Hyperbolic geometry and the Dirichlet-to-Neumann map, Advances in Math., to appear.

[9] C.E. Kenig, J. Sjöstrand, G. Uhlmann, The Calderón problem with partial data, preprint http://xxx.lanl.gov/abs/math.AP/0405486 .

[10] G. Lebeau, L. Robbiano, Contrôle exact de l’équation de la chaleur, Comm. P.D.E. 20(1-2)(1995), 335–356. | MR 1312710 | Zbl 0819.35071

[11] R. Novikov, Multidimensional inverse spectral problems for the equation -Δψ+(v(x)-Eu(x))ψ=0, Funkt. An. Ego Pril. 22(4)(1988), 11–12, and Funct. An. and its Appl., 22(4)(1988), 263–272. | MR 976992 | Zbl 0689.35098

[12] M. Sato, T. Kawai, M. Kashiwara, Microfunctions and pseudodifferential equations, Springer Lecture Notes in Math. 287 | MR 420735 | Zbl 0277.46039

[13] J. Sjöstrand, Singularités analytiques microlocales, Astérisque 95 (1982). | MR 699623 | Zbl 0524.35007

[14] J. Sylvester, G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125(1987), 153–169. | MR 873380 | Zbl 0625.35078

[15] G. Uhlmann, Developments in inverse problems since Calderón’s foundational paper, Chapter 19 in “Harmonic Analysis and Partial Differential Equations", University of Chicago Press (1999), 295-345, edited by M. Christ, C. Kenig and C. Sadosky. | MR 1743870 | Zbl 0963.35203