Nous décrivons un travail avec C.E. Kenig and G. Uhlmann [9] dans lequel nous améliorons un résultat de Bukhgeim and Uhlmann [1], en montrant qu’en dimension , la connaissance des données de Cauchy pour l’équation de Schrödinger sur des sous-ensembles possiblement très petits du bord détermine le potential de manière unique. Nous suivons la stratégie générale de [1] mais nous utilisons un ensemble plus riche de solutions du problème de Dirichlet.
We describe a joint work with C.E. Kenig and G. Uhlmann [9] where we improve an earlier result by Bukhgeim and Uhlmann [1], by showing that in dimension , the knowledge of the Cauchy data for the Schrödinger equation measured on possibly very small subsets of the boundary determines uniquely the potential. We follow the general strategy of [1] but use a richer set of solutions to the Dirichlet problem.
@article{JEDP_2004____A9_0, author = {Sj\"ostrand, Johannes}, title = {The Calder\'on problem with partial data}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2004}, pages = {1-9}, doi = {10.5802/jedp.9}, mrnumber = {2135364}, zbl = {1152.35518}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2004____A9_0} }
Sjöstrand, Johannes. The Calderón problem with partial data. Journées équations aux dérivées partielles, (2004), pp. 1-9. doi : 10.5802/jedp.9. http://gdmltest.u-ga.fr/item/JEDP_2004____A9_0/
[1] A. L. Bukhgeim, G. Uhlmann, Recovering a potential from partial Cauchy data, Comm. PDE, 27(3,4)(2002), 653–668. | MR 1900557 | Zbl 0998.35063
[2] N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonances au voisinage du réel, Acta Math. 180(1)(1998), 1–29. | MR 1618254 | Zbl 0918.35081
[3] A. P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, (1980), 65-73. | MR 590275
[4] M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268. Cambridge University Press, Cambridge, 1999. | MR 1735654 | Zbl 0926.35002
[5] J.J. Duistermaat, L. Hörmander, Fourier integral operators II, Acta Mathematica 128(1972), 183-269. | MR 388464 | Zbl 0232.47055
[6] A. Greenleaf and G. Uhlmann, Local uniqueness for the Dirichlet-to-Neumann map via the two-plane transform, Duke Math. J. 108(2001), 599-617. | MR 1838663 | Zbl 1013.35085
[7] L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math. 24(1971), 671–704. | MR 294849 | Zbl 0226.35019
[8] H. Isozaki and G. Uhlmann, Hyperbolic geometry and the Dirichlet-to-Neumann map, Advances in Math., to appear.
[9] C.E. Kenig, J. Sjöstrand, G. Uhlmann, The Calderón problem with partial data, preprint http://xxx.lanl.gov/abs/math.AP/0405486 .
[10] G. Lebeau, L. Robbiano, Contrôle exact de l’équation de la chaleur, Comm. P.D.E. 20(1-2)(1995), 335–356. | MR 1312710 | Zbl 0819.35071
[11] R. Novikov, Multidimensional inverse spectral problems for the equation , Funkt. An. Ego Pril. 22(4)(1988), 11–12, and Funct. An. and its Appl., 22(4)(1988), 263–272. | MR 976992 | Zbl 0689.35098
[12] M. Sato, T. Kawai, M. Kashiwara, Microfunctions and pseudodifferential equations, Springer Lecture Notes in Math. 287 | MR 420735 | Zbl 0277.46039
[13] J. Sjöstrand, Singularités analytiques microlocales, Astérisque 95 (1982). | MR 699623 | Zbl 0524.35007
[14] J. Sylvester, G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125(1987), 153–169. | MR 873380 | Zbl 0625.35078
[15] G. Uhlmann, Developments in inverse problems since Calderón’s foundational paper, Chapter 19 in “Harmonic Analysis and Partial Differential Equations", University of Chicago Press (1999), 295-345, edited by M. Christ, C. Kenig and C. Sadosky. | MR 1743870 | Zbl 0963.35203