Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics
Bethuel, F. ; Orlandi, G. ; Smets, D.
Journées équations aux dérivées partielles, (2004), p. 1-12 / Harvested from Numdam

Nous étudions l’équation de Ginzburg-Landau parabolique sur l’espace tout entier, plus particulièrement lorsqu’une des échelles caractéristiques tend vers zéro. Notre seule hypothèse sur la donnée initiale est une borne naturelle sur l’énergie. En comparaison avec le cas des données préparées, notre hypothèse laisse place à de nouveaux phénomènes, en particulier la présence de différents modes pour l’énergie, dont nous étudions l’interaction. Le cas de la dimension 2 d’espace est qualitativement différent et requiert une analyse séparée.

We discuss the asymptotics of the parabolic Ginzburg-Landau equation in dimension N2. Our only asumption on the initial datum is a natural energy bound. Compared to the case of “well-prepared” initial datum, this induces possible new energy modes which we analyze, and in particular their mutual interaction. The two dimensional case is qualitatively different and requires a separate treatment.

@article{JEDP_2004____A10_0,
     author = {Bethuel, F. and Orlandi, G. and Smets, D.},
     title = {Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2004},
     pages = {1-12},
     doi = {10.5802/jedp.10},
     zbl = {1067.35031},
     mrnumber = {2135365},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2004____A10_0}
}
Bethuel, F.; Orlandi, G.; Smets, D. Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics. Journées équations aux dérivées partielles,  (2004), pp. 1-12. doi : 10.5802/jedp.10. http://gdmltest.u-ga.fr/item/JEDP_2004____A10_0/

[1] G. Alberti, S. Baldo and G. Orlandi, Variational convergence for functionals of Ginzburg-Landau type, Indiana Math. Journal, submitted. | Zbl 02246719

[2] L. Ambrosio and M. Soner, A measure theoretic approach to higher codimension mean curvature flow, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. 25 (1997), 27-49. | Numdam | MR 1655508 | Zbl 1043.35136

[3] P. Baumann, C-N. Chen, D. Phillips, P. Sternberg, Vortex annihilation in nonlinear heat flow for Ginzburg-Landau systems, Eur. J. Appl. Math. 6 (1995), 115–126. | MR 1331494 | Zbl 0845.35042

[4] F. Bethuel, G. Orlandi and D. Smets, Vortex rings for the Gross-Pitaevskii equation, Jour. Eur. Math. Soc. 6 (2004), 17-94. | MR 2041006 | Zbl 02075133

[5] F. Bethuel, G. Orlandi and D. Smets, Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature, Annals of Math., to appear. | MR 1988309 | Zbl 1103.35038

[6] F. Bethuel, G. Orlandi and D. Smets, Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics, preprint. | Zbl 1087.35008

[7] K. Brakke, The motion of a surface by its mean curvature, Princeton University Press, 1978. | MR 485012 | Zbl 0386.53047

[8] L. Bronsard and R.V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics, J. Differential Equations 90 (1991), 211-237. | MR 1101239 | Zbl 0735.35072

[9] W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Phys. D 77 (1994), no. 4, 383-404. | MR 1297726 | Zbl 0814.34039

[10] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), 237-266. | MR 772132 | Zbl 0556.53001

[11] G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990), 285-299. | MR 1030675 | Zbl 0694.53005

[12] T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differential Geom. 38 (1993), 417-461. | MR 1237490 | Zbl 0784.53035

[13] T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc. 108 (1994), no. 520. | MR 1196160 | Zbl 0798.35066

[14] R.L. Jerrard and H.M. Soner, Dynamics of Ginzburg-Landau vortices, Arch. Rational Mech. Anal. 142 (1998), 99-125. | MR 1629646 | Zbl 0923.35167

[15] R.L. Jerrard and H.M. Soner, Scaling limits and regularity results for a class of Ginzburg-Landau systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), 423-466. | Numdam | MR 1697561 | Zbl 0944.35006

[16] R.L. Jerrard and H.M. Soner, The Jacobian and the Ginzburg-Landau energy, Calc. Var. PDE 14 (2002), 151-191. | MR 1890398 | Zbl 1034.35025

[17] F.H. Lin, Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math. 49 (1996), 323–359. | MR 1376654 | Zbl 0853.35058

[18] F.H. Lin, Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds, Comm. Pure Appl. Math. 51 (1998), 385-441. | MR 1491752 | Zbl 0932.35121

[19] J.C. Neu, Vortices in complex scalar fields, Phys. D 43 (1990), no.2-3, 385-406. | MR 1067918 | Zbl 0711.35024

[20] L.M. Pismen and J. Rubinstein, Motion of vortex lines in the Ginzburg-Landau model, Phys. D 47 (1991), 353-360. | MR 1098255 | Zbl 0728.35090

[21] J. Rubinstein and P. Sternberg, On the slow motion of vortices in the Ginzburg-Landau heat-flow, SIAM J. Appl. Math. 26 (1995), 1452-1466. | MR 1356453 | Zbl 0838.35102

[22] E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure App. Math., to appear. | MR 2082242 | Zbl 1065.49011

[23] S. Serfaty, Vortex Collision and Energy Dissipation Rates in the Ginzburg-Landau Heat Flow, in preparation.

[24] H.M. Soner, Ginzburg-Landau equation and motion by mean curvature. I. Convergence, and II. Development of the initial interface, J. Geom. Anal. 7 (1997), no. 3, 437-475 and 477-491. | MR 1674799 | Zbl 0935.35060

[25] D. Spirn, Vortex dynamics of the full time-dependent Ginzburg-Landau equations, Comm. Pure Appl. Math. 55 (2002), no. 5, 537-581. | MR 1880643 | Zbl 1032.35163