Linear size test sets for certain commutative languages
Holub, Štěpán ; Kortelainen, Juha
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001), p. 453-475 / Harvested from Numdam

We prove that for each positive integer n, the finite commutative language E n =c(a 1 a 2 a n ) possesses a test set of size at most 5n. Moreover, it is shown that each test set for E n has at least n-1 elements. The result is then generalized to commutative languages L containing a word w such that (i) alph(w)=alph(L); and (ii) each symbol aalph(L) occurs at least twice in w if it occurs at least twice in some word of L: each such L possesses a test set of size 11n, where n=Card(alph(L)). The considerations rest on the analysis of some basic types of word equations.

Publié le : 2001-01-01
Classification:  68R15
@article{ITA_2001__35_5_453_0,
     author = {Holub, \v St\v ep\'an and Kortelainen, Juha},
     title = {Linear size test sets for certain commutative languages},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {35},
     year = {2001},
     pages = {453-475},
     mrnumber = {1908866},
     zbl = {1010.68103},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2001__35_5_453_0}
}
Holub, Štěpán; Kortelainen, Juha. Linear size test sets for certain commutative languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) pp. 453-475. http://gdmltest.u-ga.fr/item/ITA_2001__35_5_453_0/

[1] J. Albert, On test sets, checking sets, maximal extensions and their effective constructions. Habilitationsschirft, Fakultät für Wirtschaftswissenschaften der Universität Karlsruhe (1968).

[2] M.H. Albert and J. Lawrence, A proof of Ehrenfeucht‘s Conjecture. Theoret. Comput. Sci. 41 (1985) 121-123. | Zbl 0602.68066

[3] J. Albert and D. Wood, Checking sets, test sets, rich languages and commutatively closed languages. J. Comput. System Sci. 26 (1983) 82-91. | MR 699221 | Zbl 0507.68049

[4] Ch. Choffrut and J. Karhumäki, Combinatorics on words, in Handbook of Formal Languages, Vol. I, edited by G. Rosenberg and A. Salomaa. Springer-Verlag, Berlin (1997) 329-438. | MR 1469998

[5] A. Ehrenfeucht, J. Karhumäki and G. Rosenberg, On binary equality sets and a solution to the test set conjecture in the binary case. J. Algebra 85 (1983) 76-85. | MR 723068 | Zbl 0523.68066

[6] P. Erdös and G. Szekeres, A combinatorial problem in geometry. Compositio Math. 2 (1935) 464-470. | JFM 61.0651.04 | Numdam | MR 1556929

[7] I. Hakala, On word equations and the morphism equivqalence problem for loop languages. Academic dissertation, Faculty of Science, University of Oulu (1997). | MR 1486576 | Zbl 0978.68533

[8] I. Hakala and J. Kortelainen, On the system of word equations x 0 u 1 i x 1 u 2 i x 2 u 3 i x 3 =y 0 v 1 i y 1 i v 2 i y 2 v 3 i y 3 (i=0,1,2,) in a free monoid. Theoret. Comput. Sci. 225 (1999) 149-161. | MR 1708036 | Zbl 0930.68076

[9] I. Hakala and J. Kortelainen, Linear size test sets for commutative languages. RAIRO: Theoret. Informatics Appl. 31 (1997) 291-304. | Numdam | MR 1483261 | Zbl 0889.68091

[10] T. Harju and J. Karhumäki, Morphisms, in Handbook of Formal Languages, Vol. I, edited by G. Rosenberg and A. Salomaa. Springer-Verlag, Berlin (1997) 439-510. | MR 1469999 | Zbl 0866.68057

[11] M.A. Harrison, Introduction to Formal Language Theory. Addison-Wesley, Reading, Reading Massachusetts (1978). | MR 526397 | Zbl 0411.68058

[12] Š. Holub, Local and global cyclicity in free monoids. Theoret. Comput. Sci. 262 (2001) 25-36. | MR 1836209 | Zbl 0983.68097

[13] J. Karhumäki and W. Plandowski, On the size of independent systems of equations in semigroups. Theoret. Comput. Sci. 168 (1996) 105-119. | MR 1424994 | Zbl 0877.20039

[14] J. Kortelainen, On the system of word equations x 0 u 1 i x 1 u 2 i x 2 u m i x m =y 0 v 1 i y 1 v 2 i y 2 v n i y n (i=1,2,...) in a free monoid. J. Autom. Lang. Comb. 3 (1998) 43-57. | MR 1663869 | Zbl 0919.68078

[15] M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading Massachusetts (1983). | MR 675953 | Zbl 0514.20045

[16] A. Salomaa, The Ehrenfeucht conjecture: A proof for language theorists. Bull. EATCS 27 (1985) 71-82.