Asymptotics for Eigenvalues of a Non-Linear Integral System
Edmunds, D.E. ; Lang, J.
Bollettino dell'Unione Matematica Italiana, Tome 1 (2008), p. 105-119 / Harvested from Biblioteca Digitale Italiana di Matematica

Let I=[a,b], let 1<q,p<, let u and v be positive functions with uLp(I) e vLq(I) and let T:Lp(I)Lq(I) be the Hardy-type operator given by \begin{equation*} (Tf)(x) = v(x) \int_a^x f(t)u(t) \, dt, \quad x\in I. \end{equation*} We show that the asymptotic behavior of the eigenvalues λ of the non-linear integral system \begin{equation*} g(x) = (TF)(x) \qquad (f(x))_{(p)} = \lambda(T^{*}g_{(p)}))(x) \end{equation*} (where, for example, t(p)=|t|p-1sgn(t) is given by \begin{align*} &\lim_{n \to \infty}n\hat{\lambda}_n(T) = c_{p,q} \left( \int_I (uv)^r)^{1/r} \, dt \right)^{1/r}, \qquad \text{for } 1 < p < q < \infty \\ &\lim_{n \to \infty} n\check{\lambda}_n(T) = c_{p,q} \left( \int_I (uv)^r \, dt \right)^{1/r} \qquad \text{for } 1 < q < p < \infty \end{align*} Here r=1p+1p, cp,q is an explicit constant depending only on p and q, λ^(T)=max(spn(T,p,q)), λˇn(T)=min(spn(T,p,q)) where spn(T,p,q) stands for the set of all eigenvalues λ corresponding to eigenfunctions g with n zeros.

Sia I=[a,b] un sottinsieme di . Siano 1<q,p< siano u e v funzioni positive, con uLp(I) e vLq(I). Sia T:Lp(I)Lq(I) un operatore di Hardy definito nel modo seguente: \begin{equation*} (Tf)(x) = v(x) \int_a^x f(t)u(t) \, dt, \quad x\in I. \end{equation*} Dimostereremo che il comportamento asintotico degli autovalori λ nel sistema integrale non lineare \begin{equation*} g(x) = (TF)(x) \qquad (f(x))_{(p)} = \lambda(T^{*}g_{(p)}))(x) \end{equation*} (dove, per esempio t(p)=|t|p-1sgn(t)) è dato da \begin{align*} &\lim_{n \to \infty}n\hat{\lambda}_n(T) = c_{p,q} \left( \int_I (uv)^r)^{1/r} \, dt \right)^{1/r}, \qquad \text{quando } 1 < p < q < \infty \\ &\lim_{n \to \infty} n\check{\lambda}_n(T) = c_{p,q} \left( \int_I (uv)^r \, dt \right)^{1/r} \qquad \text{quando } 1 < q < p < \infty \end{align*} Qui r=1p+1p, cp,q \`e una costante esplicita che dipende solo da p e q, λ^(T)=max(spn(T,p,q)), λˇn(T)=min(spn(T,p,q)), dove spn(T,p,q) rappresenta l'insieme di tutti gli autovalori λ che corrispondono alle autofunzioni g con n zeri.

Publié le : 2008-02-01
@article{BUMI_2008_9_1_1_105_0,
     author = {D.E. Edmunds and J. Lang},
     title = {Asymptotics for Eigenvalues of a Non-Linear Integral System},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1},
     year = {2008},
     pages = {105-119},
     zbl = {1164.45004},
     mrnumber = {2388000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_1_105_0}
}
Edmunds, D.E.; Lang, J. Asymptotics for Eigenvalues of a Non-Linear Integral System. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 105-119. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_1_105_0/

[1] Bennewitz, C., Approximation numbers = Singular values, Journal of Computational and Applied Mathematics, to appear. | MR 2347739 | Zbl 1126.47019

[2] Buslaev, A. P., On Bernstein-Nikol'ski inequalities and widths of Sobolev classes of functions, Dokl. Akad. Nauk, 323, no. 2 (1992), 202-205. | MR 1191531

[3] Buslaev, A. P. - Tikhomirov, V. M., Spectra of nonlinear differential equations and widths of Sobolev classes. Mat. Sb., 181 (1990), 1587-1606, English transl. in Math. USSR Sb., 71 (1992), 427-446. | MR 1099516 | Zbl 0718.34113

[4] Edmunds, D. E. - Evans, W. D., Spectral theory and differential operators, Oxford University Press, Oxford, 1987. | MR 929030 | Zbl 0628.47017

[5] Edmunds, D. E. - Evans, W. D., Hardy operators, function spaces and embeddings, Springer, Berlin-Heidelberg-New York, 2004. | MR 2091115

[6] Edmunds, D. E. - Lang, J., Bernstein widths of Hardy-type operators in a non-homogeneous case, J. Math. Analysis and Applications, 325 (2007), 1060-1076. | MR 2270069 | Zbl 1126.47041

[7] Edmunds, D. E. - Lang, J., Approximation numbers and Kolmogorov widths of Hardy-type operators in a non-homogeneous case, Mathematische Nachrichten, 279, no. 7 (2006), 727-742. | MR 2226408 | Zbl 1102.47035

[8] T'En Nam, Nguen,, The spectrum of nonlinear integral equations and widths of function classes, Math. Notes, 53, no. 3-4 (1993), 424-429. | MR 1240866

[9] Kufner, A. - John, O. - Fucik, S., Function spaces, Noordhoff International Publishing, Leyden, (1977). | MR 482102