Let , let , let and be positive functions with e and let be the Hardy-type operator given by \begin{equation*} (Tf)(x) = v(x) \int_a^x f(t)u(t) \, dt, \quad x\in I. \end{equation*} We show that the asymptotic behavior of the eigenvalues of the non-linear integral system \begin{equation*} g(x) = (TF)(x) \qquad (f(x))_{(p)} = \lambda(T^{*}g_{(p)}))(x) \end{equation*} (where, for example, is given by \begin{align*} &\lim_{n \to \infty}n\hat{\lambda}_n(T) = c_{p,q} \left( \int_I (uv)^r)^{1/r} \, dt \right)^{1/r}, \qquad \text{for } 1 < p < q < \infty \\ &\lim_{n \to \infty} n\check{\lambda}_n(T) = c_{p,q} \left( \int_I (uv)^r \, dt \right)^{1/r} \qquad \text{for } 1 < q < p < \infty \end{align*} Here , is an explicit constant depending only on and , , where stands for the set of all eigenvalues corresponding to eigenfunctions with zeros.
Sia un sottinsieme di . Siano siano e funzioni positive, con e . Sia un operatore di Hardy definito nel modo seguente: \begin{equation*} (Tf)(x) = v(x) \int_a^x f(t)u(t) \, dt, \quad x\in I. \end{equation*} Dimostereremo che il comportamento asintotico degli autovalori nel sistema integrale non lineare \begin{equation*} g(x) = (TF)(x) \qquad (f(x))_{(p)} = \lambda(T^{*}g_{(p)}))(x) \end{equation*} (dove, per esempio ) è dato da \begin{align*} &\lim_{n \to \infty}n\hat{\lambda}_n(T) = c_{p,q} \left( \int_I (uv)^r)^{1/r} \, dt \right)^{1/r}, \qquad \text{quando } 1 < p < q < \infty \\ &\lim_{n \to \infty} n\check{\lambda}_n(T) = c_{p,q} \left( \int_I (uv)^r \, dt \right)^{1/r} \qquad \text{quando } 1 < q < p < \infty \end{align*} Qui , \`e una costante esplicita che dipende solo da e , , ), dove rappresenta l'insieme di tutti gli autovalori che corrispondono alle autofunzioni con zeri.
@article{BUMI_2008_9_1_1_105_0, author = {D.E. Edmunds and J. Lang}, title = {Asymptotics for Eigenvalues of a Non-Linear Integral System}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {105-119}, zbl = {1164.45004}, mrnumber = {2388000}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_1_105_0} }
Edmunds, D.E.; Lang, J. Asymptotics for Eigenvalues of a Non-Linear Integral System. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 105-119. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_1_105_0/
[1] Approximation numbers = Singular values, Journal of Computational and Applied Mathematics, to appear. | MR 2347739 | Zbl 1126.47019
,[2] On Bernstein-Nikol'ski inequalities and widths of Sobolev classes of functions, Dokl. Akad. Nauk, 323, no. 2 (1992), 202-205. | MR 1191531
,[3] Spectra of nonlinear differential equations and widths of Sobolev classes. Mat. Sb., 181 (1990), 1587-1606, English transl. in Math. USSR Sb., 71 (1992), 427-446. | MR 1099516 | Zbl 0718.34113
- ,[4] | MR 929030 | Zbl 0628.47017
- , Spectral theory and differential operators, Oxford University Press, Oxford, 1987.[5] | MR 2091115
- , Hardy operators, function spaces and embeddings, Springer, Berlin-Heidelberg-New York, 2004.[6] Bernstein widths of Hardy-type operators in a non-homogeneous case, J. Math. Analysis and Applications, 325 (2007), 1060-1076. | MR 2270069 | Zbl 1126.47041
- ,[7] Approximation numbers and Kolmogorov widths of Hardy-type operators in a non-homogeneous case, Mathematische Nachrichten, 279, no. 7 (2006), 727-742. | MR 2226408 | Zbl 1102.47035
- ,[8] The spectrum of nonlinear integral equations and widths of function classes, Math. Notes, 53, no. 3-4 (1993), 424-429. | MR 1240866
,[9] | MR 482102
- - , Function spaces, Noordhoff International Publishing, Leyden, (1977).