In this paper we consider two-dimensional quasilinear equations of the form and study the properties of the solutions u with bounded and non-vanishing gradient. Under a weak assumption involving the growth of the argument of (notice that is a well-defined real function since on ) we prove that is one-dimensional, i.e., for some unit vector . As a consequence of our result we obtain that any solution having one positive derivative is one-dimensional. This result provides a proof of a conjecture of E. De Giorgi in dimension 2 in the more general context of the quasilinear equations. In particular we obtain a new and simple proof of the classical De Giorgi's conjecture.
In questo lavoro si considerano le equazioni quasilineari della forma in e si studiano le proprietà delle soluzioni il cui gradiente è limitato e non si annulla mai. Sotto un'ipotesi naturale, riguardante la crescita della fase del gradiente di (si noti che la funzione è ben definita in quanto in ), si dimostra che è a simmetria unidimensionale, ovvero , dove è un vettore unitario di . Come conseguenza di questo risultato si ottiene che ogni soluzione avente una derivata positiva è a simmetria unidimensionale. Questo risultato fornisce la dimostrazione di una congettura di . De Giorgi nel più ampio contesto delle equazioni quasilineari. In particolare, nel caso delle equazioni semilineari, si ottiene una nuova e semplice dimostrazione della (classica) congettura di De Giorgi.
@article{BUMI_2003_8_6B_3_685_0, author = {Alberto Farina}, title = {One-dimensional symmetry for solutions of quasilinear equations in $\mathbb{R}^2$}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {685-692}, zbl = {1115.35045}, mrnumber = {2014827}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_3_685_0} }
Farina, Alberto. One-dimensional symmetry for solutions of quasilinear equations in $\mathbb{R}^2$. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 685-692. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_3_685_0/
[1] On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property. Special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday, Acta Appl. Math., 65, no. 1-3 (2001), 9-33. | MR 1843784 | Zbl 1121.35312
- - ,[2] Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi, J. Amer. Math. Soc., 13, no. 4 (2000), 725-739. | MR 1775735 | Zbl 0968.35041
- ,[3] A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math., 47, no. 11 (1994), 1457-1473. | MR 1296785 | Zbl 0819.35016
- - ,[4] Convergence Problems for Functionals and Operators, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pp. 131-188, Pitagora, Bologna, 1979. | MR 533166 | Zbl 0405.49001
,[5] Some remarks on a conjecture of De Giorgi, Calc. Var. Partial Differential Equations, 8, no. 3 (1999), 233-245. | MR 1688549 | Zbl 0938.35057
,[6] On a conjecture of De Giorgi and some related problems, Math. Ann., 311, no. 3 (1998), 481-491. | MR 1637919 | Zbl 0918.35046
- ,[7] On isolated singularities of solutions of second order elliptic differential equations, J. Analyse Math., 4 (1955/56), 309-340. | MR 81416 | Zbl 0071.09701
- ,[8] | MR 244627 | Zbl 0164.13002
- , Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.[9] Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51, no. 1 (1984), 126-150. | MR 727034 | Zbl 0488.35017
,