Si studia il comportamento asintotico di una classe di funzionali integrali che possono dipendere da misure concentrate su strutture periodiche multidimensionali, quando tale periodo tende a 0. Il problema viene ambientato in spazi di Sobolev rispetto a misure periodiche. Si dimostra, sotto ipotesi generali, che un appropriato limite può venire definito su uno spazio di Sobolev usuale usando tecniche di -convergenza. Il limite viene espresso come un funzionale integrale il cui integrando è caratterizzato da opportune formule.
@article{BUMI_1999_8_2B_3_735_0, author = {Nadia Ansini and Andrea Braides and Valeria Chiad\`o Piat}, title = {Homogenization of periodic multi-dimensional structures}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {2-A}, year = {1999}, pages = {735-758}, zbl = {0944.49015}, mrnumber = {1719514}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_1999_8_2B_3_735_0} }
Ansini, Nadia; Braides, Andrea; Chiadò Piat, Valeria. Homogenization of periodic multi-dimensional structures. Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999) pp. 735-758. http://gdmltest.u-ga.fr/item/BUMI_1999_8_2B_3_735_0/
[1] | MR 450957 | Zbl 0314.46030
, Sobolev Spaces, Academic Press, New York (1975).[2] Lower semicontinuity problems in Sobolev spaces with respect to a measure, J. Math. Pures Appl., 75 (1996), 211-224. | MR 1387520 | Zbl 0844.49012
- - ,[3] Energies with respect to a measure and applications to low dimensional structures, Calc. Var., 5 (1997), 37-54. | MR 1424348 | Zbl 0934.49011
- - ,[4] Homogenization of some almost periodic functional, Rend. Accad. Naz. Sci. XL, 103 (1985), 313-322. | MR 899255 | Zbl 0582.49014
,[5] Remarks on the homogenization of connected media, Nonlinear Anal., 22 (1994), 391-407. | MR 1266368 | Zbl 0802.35006
- ,[6] Homogenization of nonlinear media with soft and stiff inclusions, Math. Mod. Meth. Appl. Sci., 5 (1995), 543-564. | MR 1335833 | Zbl 0836.73003
- ,[7] | MR 1020296 | Zbl 0669.49005
, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Longman, Harlow (1989).[8] Note on a parameter lumping in the vibrations of an elastic beam, Rend. Ist. Mat. Univ. Trieste, 28 (1996), 83-99. | MR 1463911 | Zbl 0881.73069
,[9] | MR 1201152 | Zbl 0816.49001
, An Introduction to -Convergence, Birkhäuser, Boston (1993).[10] Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat., 58 (1975), 842-850. | MR 448194 | Zbl 0339.49005
- ,[11] | MR 1158660 | Zbl 0804.28001
- , Measure Theory and Fine Properties of Functions, CRC Press, Ann Harbor (1992).[12] | MR 257325 | Zbl 0176.00801
, Geometric Measure Theory, Springer Verlag, Berlin (1969).[13] Averaging of Difference Schemes, Math. USSR Sbornik, 57 (1987), 351-369. | Zbl 0639.65052
,[14] Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl., 117 (1978), 481-498. | MR 515958 | Zbl 0395.49007
,[15] Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rational Mech. Anal., 99 (1987), 189-212. | MR 888450 | Zbl 0629.73009
,[16] | MR 1482803 | Zbl 0883.35001
, -Convergence and Homogenization of Nonlinear Partial Differential Operators, Kluwer Academic Publishers, Dordrecht (1997).[17] | MR 1014685 | Zbl 0692.46022
, Weakly Differentiable Functions, Springer-Verlag, Berlin (1989).[18] Lavrentiev phenomenon and homogenization for some variational problems, in Composite Media and Homogenization Theory, World Scientific, Singapore (1995), 273-288. | Zbl 0783.35005
,