Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions
[Pourquoi les algèbres de Jordan sont-elles naturelles en statistiques ? La régression quadratique implique la distribution de Wishart]
Letac, G. ; Wesołowski, J.
Bulletin de la Société Mathématique de France, Tome 139 (2011), p. 129-144 / Harvested from Numdam

Si l’espace 𝒬 des formes quadratiques sur n est décomposé en une somme directe 𝒬 1 ...𝒬 k et si X et Y sont des variables aléatoires indépendantes de n , supposons qu’il existe un nombre réel a tel que E(X|X+Y)=a(X+Y) ainsi que des nombres réels distincts b 1 ,...,b k tels que E(q(X)|X+Y)=b i q(X+Y) pour tout q de 𝒬 i . Nous montrons que cela n’arrive que pour k=2, que lorsque n peut être structuré en algèbre de Jordan euclidienne et que lorsque X et Y suivent des lois de Wishart correspondant à cette structure.

If the space 𝒬 of quadratic forms in n is splitted in a direct sum 𝒬 1 ...𝒬 k and if X and Y are independent random variables of n , assume that there exist a real number a such that E(X|X+Y)=a(X+Y) and real distinct numbers b 1 ,...,b k such that E(q(X)|X+Y)=b i q(X+Y) for any q in 𝒬 i . We prove that this happens only when k=2, when n can be structured in a Euclidean Jordan algebra and when X and Y have Wishart distributions corresponding to this structure.

Publié le : 2011-01-01
DOI : https://doi.org/10.24033/bsmf.2603
Classification:  60H10,  62H05
Mots clés: cônes symétriques, matrices aléatoires, caractérisation des lois de Wishart
@article{BSMF_2011__139_1_129_0,
     author = {Letac, G\'erard and Weso\l owski, J.},
     title = {Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     volume = {139},
     year = {2011},
     pages = {129-144},
     doi = {10.24033/bsmf.2603},
     zbl = {1213.62089},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BSMF_2011__139_1_129_0}
}
Letac, G.; Wesołowski, J. Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions. Bulletin de la Société Mathématique de France, Tome 139 (2011) pp. 129-144. doi : 10.24033/bsmf.2603. http://gdmltest.u-ga.fr/item/BSMF_2011__139_1_129_0/

[1] S. Andersson - « Invariant normal models », Ann. Statist. 3 (1975), p. 132-154. | MR 362703 | Zbl 0373.62029

[2] D. J. Bartlett - « On the theory of the statistical regression », Proc. Royal Soc. Edinburgh 53 (1933), p. 260-283. | JFM 59.0513.04

[3] K. Bobecka & J. Wesołowski - « The Lukacs-Olkin-Rubin theorem without invariance of the “quotient” », Studia Math. 152 (2002), p. 147-160. | MR 1916547 | Zbl 0993.62043

[4] E. M. Carter - « Characterization and testing problems in the complex Wishart distribution », Thèse, University of Toronto, 1975. | MR 2627434

[5] M. Casalis - « Les familles exponentielles à variance quadratique homogène sont des lois de Wishart sur un cône symétrique », C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), p. 537-540. | MR 1099688 | Zbl 0745.62051

[6] M. Casalis & G. Letac - « Characterization of the Jørgensen set in generalized linear models », Test 3 (1994), p. 145-162. | MR 1293112 | Zbl 0815.62030

[7] -, « The Lukacs-Olkin-Rubin characterization of Wishart distributions on symmetric cones », Ann. Statist. 24 (1996), p. 763-786. | MR 1394987 | Zbl 0906.62053

[8] M. L. Eaton - Multivariate statistics, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Inc., 1983. | MR 716321 | Zbl 0587.62097

[9] J. Faraut & A. Korányi - Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press Oxford Univ. Press, 1994, Oxford Science Publications. | MR 1446489 | Zbl 0841.43002

[10] N. R. Goodman - « Statistical analysis based on a certain multivariate complex Gaussian distribution. (An introduction) », Ann. Math. Statist. 34 (1963), p. 152-177. | MR 145618 | Zbl 0122.36903

[11] S. Gyndikin - « Invariant generalized functions in homogeneous spaces », J. Funct. Anal. Appl. 9 (1975), p. 50-52. | Zbl 0332.32022

[12] S. T. Jensen - « Covariance hypotheses which are linear in both the covariance and the inverse covariance », Ann. Statist. 16 (1988), p. 302-322. | MR 924873 | Zbl 0653.62042

[13] R. G. Laha & E. Lukacs - « On a problem connected with quadratic regression », Biometrika 47 (1960), p. 335-343. | MR 121922 | Zbl 0093.16002

[14] M. Lassalle - « Algèbre de Jordan et ensemble de Wallach », Invent. Math. 89 (1987), p. 375-393. | MR 894386 | Zbl 0622.22008

[15] G. Letac - « Le problème de la classification des familles exponentielles naturelles de 𝐑 d ayant une fonction variance quadratique », in Probability measures on groups, IX (Oberwolfach, 1988), Lecture Notes in Math., vol. 1379, Springer, 1989, p. 192-216. | MR 1020532 | Zbl 0679.62010

[16] G. Letac & H. Massam - « Quadratic and inverse regressions for Wishart distributions », Ann. Statist. 26 (1998), p. 573-595. | MR 1626071 | Zbl 1073.62536

[17] G. Letac & J. Wesołowski - « Laplace transforms which are negative powers of quadratic polynomials », Trans. Amer. Math. Soc. 360 (2008), p. 6475-6496. | MR 2434295 | Zbl 1152.60019

[18] E. Lukacs - « A characterization of the gamma distribution », Ann. Math. Statist. 26 (1955), p. 319-324. | MR 69408 | Zbl 0065.11103

[19] M. L. Mehta - Random matrices, third éd., Pure and Applied Mathematics (Amsterdam), vol. 142, Elsevier/Academic Press, Amsterdam, 2004. | MR 2129906 | Zbl 1107.15019

[20] R. J. Muirhead - Aspects of multivariate statistical theory, John Wiley & Sons Inc., 1982. | MR 652932 | Zbl 0556.62028

[21] I. Olkin & H. Rubin - « A characterization of the Wishart distribution », Ann. Math. Statist. 33 (1962), p. 1272-1280. | MR 141186 | Zbl 0111.34202

[22] S. D. Peddada & D. S. P. Richards - « Proof of a conjecture of M. L. Eaton on the characteristic function of the Wishart distribution », Ann. Probab. 19 (1991), p. 868-874. | MR 1106290 | Zbl 0728.62053

[23] D. N. Shanbhag - « The Davidson-Kendall problem and related results on the structure of the Wishart distribution », Austr. J. Statist. 30A (1988), p. 272-280. | Zbl 0694.62024

[24] Y. H. Wang - « Extensions of Lukacs' characterization of the gamma distribution », in Analytical methods in probability theory (Oberwolfach, 1980), Lecture Notes in Math., vol. 861, Springer, 1981, p. 166-177. | MR 655271 | Zbl 0459.60012

[25] J. Wishart - « The generalised product moment distribution in samples from a normal multivariate population », Biometrika 20A (1928), p. 32-52. | JFM 54.0565.02