Un polyèdre hyperidéal est un polyèdre non-compact de l’espace hyperbolique de dimension qui, dans le modèle projectif pour , est simplement l’intersection de avec un polyèdre projectif dont les sommets sont tous en dehors de et dont toutes les arêtes rencontrent . Nous classifions ces polyèdres hyperidéaux, à isométrie de près, en fonction de leur type combinatoire et de leurs angles diédraux.
A hyperideal polyhedron is a non-compact polyhedron in the hyperbolic -space which, in the projective model for , is just the intersection of with a projective polyhedron whose vertices are all outside and whose edges all meet . We classify hyperideal polyhedra, up to isometries of , in terms of their combinatorial type and of their dihedral angles.
@article{BSMF_2002__130_3_457_0, author = {Bao, Xiliang and Bonahon, Francis}, title = {Hyperideal polyhedra in hyperbolic 3-space}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {130}, year = {2002}, pages = {457-491}, doi = {10.24033/bsmf.2426}, mrnumber = {1943885}, zbl = {1033.52009}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_2002__130_3_457_0} }
Bao, Xiliang; Bonahon, Francis. Hyperideal polyhedra in hyperbolic 3-space. Bulletin de la Société Mathématique de France, Tome 130 (2002) pp. 457-491. doi : 10.24033/bsmf.2426. http://gdmltest.u-ga.fr/item/BSMF_2002__130_3_457_0/
[1] Konvexe Polyeder, Akademie-Verlag, Berlin, 1958. | MR 92989
-[2] « On Convex Polyhedra in Lobačevskiĭ Spaces (Russian) », Mat. Sbornik 81 (123) (1970), p. 445-478; English transl., Math. USSR Sb. t.10 (1970), pp.413-440. | MR 259734 | Zbl 0217.46801
-[3] -, « On Convex Polyhedra of Finite Volume in Lobačevskiĭ Spaces (Russian) », Mat. Sbornik 83 (125) (1970), p. 256-260; English transl., Math. USSR Sb. t.12 (1970), pp.255-259. | MR 273510 | Zbl 0252.52005
[4] Hyperideal Polyhedra in Hyperbolic -Space, Doctoral dissertation, University of Southern California, Los Angeles, 1998. | MR 2707528 | Zbl 1033.52009
-[5] « Sur les polygones et les polyèdres », J. École Polytechnique 9 (1813), p. 87-98.
-[6] « On Complexes with Transitive Groups of Automorphisms », Ann. of Math. 35 (1934), p. 588-621. | JFM 60.0898.02 | Zbl 0010.01101
-[7] Polyhedra, Cambridge University Press, 1997. | MR 1458063 | Zbl 0926.52014
-[8] Convex Polytopes, Interscience Publishers, John Wiley & Sons Inc., New York, 1967. | MR 226496 | Zbl 0163.16603
-[9] A Course in Combinatorics, Cambridge University Press, 1992. | MR 1207813 | Zbl 0769.05001 | Zbl 0980.05001
& -[10] « Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume », Ann. of Math. 139 (1994), p. 553-580. | MR 1283870 | Zbl 0823.52009
-[11] -, « A Characterization of Ideal Polyhedra in Hyperbolic -Space », Ann. of Math. 143 (1996), p. 51-70. | MR 1370757 | Zbl 0874.52006
[12] « A Characterization of Compact Convex Polyhedra in Hyperbolic -Space », Invent. Math. 111 (1993), p. 77-111; Corrigendum, Invent. Math. t.117 (1994), pp.359. | MR 1193599 | Zbl 0798.52009
& -[13] « Métriques sur les polyèdres hyperboliques convexes », J. Diff. Geom. 48 (1998), p. 323-405. | MR 1630178 | Zbl 0912.52008
-[14] -, « Dihedral Angles of Convex Polyhedra », Discrete Comp. Geom. 23 (2000), p. 409-417. | MR 1744513 | Zbl 0951.52006
[15] « Geometrical Problems Concerning Polyhedra in the Large », Comm. Pure Appl. Math. 21 (1958), p. 119-168. | MR 222765 | Zbl 0159.24301
-[16] Three-Dimensional Geometry and Topology, (S. Levy, ed.), Princeton Math. Series, vol. 35, Princeton University Press, 1997. | MR 1435975 | Zbl 0873.57001
-[17] « Discrete groups generated by reflections in Lobačevskiĭ spaces », Mat. Sbornik 72 (114) (1967), p. 471-488; English transl., Math. USSR Sb. t.1 (1967), pp.429-444; Correction, Mat. Sbornik t.73 (115) (1967), pp.303. | MR 207853 | Zbl 0166.16303
-