Dans cet article, on étudie la jauge conforme Ahlfors régulière d’un espace métrique compact et sa dimension conforme . À l’aide d’une suite de recouvrements finis de , on construit des distances dans sa jauge Ahlfors régulière de dimension de Hausdorff contrôlée. On obtient ainsi une description combinatoire, à homéomorphismes bi-Lipschitz près, de toutes les métriques dans la jauge. On montre comment calculer à partir de modules combinatoires en considérant un exposant critique .
In this article we study the Ahlfors regular conformal gauge of a compact metric space , and its conformal dimension . Using a sequence of finite coverings of , we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute using the critical exponent associated to the combinatorial modulus.
@article{ASENS_2013_4_46_3_495_0, author = {Carrasco Piaggio, Matias}, title = {On the conformal gauge of a compact metric space}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {46}, year = {2013}, pages = {495-548}, doi = {10.24033/asens.2195}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2013_4_46_3_495_0} }
Carrasco Piaggio, Matias. On the conformal gauge of a compact metric space. Annales scientifiques de l'École Normale Supérieure, Tome 46 (2013) pp. 495-548. doi : 10.24033/asens.2195. http://gdmltest.u-ga.fr/item/ASENS_2013_4_46_3_495_0/
[1] Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co., 1973. | MR 357743
,[2] Quasiconformal geometry of fractals, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, 1349-1373. | MR 2275649
,[3] Uniformizing Gromov hyperbolic spaces, Astérisque 270 (2001). | MR 1829896
, & ,[4] Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), 127-183. | MR 1930885
& ,[5] Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol. 9 (2005), 219-246. | MR 2116315
& ,[6] Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups, Groups Geom. Dyn. 7 (2013), 39-107. | MR 3019076
& ,[7] Some applications of -cohomology to boundaries of Gromov hyperbolic spaces, preprint arXiv:1203.1233.
& ,[8] Cohomologie et espaces de Besov, J. reine angew. Math. 558 (2003), 85-108. | MR 1979183
& ,[9] The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), 155-234. | MR 1301392
,[10] Jauge conforme des espaces métriques compacts, Thèse, Université Aix-Marseille, 2011.
,[11] Conformal dimension and canonical splittings of hyperbolic groups, preprint arXiv:1301.6492.
,[12] A theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601-628. | MR 1096400
,[13] Géométrie et théorie des groupes, Lecture Notes in Math. 1441, Springer, 1990. | MR 1075994
, & ,[14] Fractured fractals and broken dreams, Oxford Lecture Series in Mathematics and its Applications 7, The Clarendon Press Oxford Univ. Press, 1997. | MR 1616732
& ,[15] The -cohomology and the conformal dimension of hyperbolic cones, Geom. Dedicata 68 (1997), 263-279. | MR 1486435
,[16] Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math. 83, Birkhäuser, 1990. | MR 1086648
& (éds.),[17] Empilements de cercles et modules combinatoires, Ann. Inst. Fourier (Grenoble) 59 (2009), 2175-2222. | Numdam | MR 2640918
,[18] Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités, d'après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner, Séminaire Bourbaki, vol. 2007/08, exp. no 993, Astérisque 326 (2009), 321-362. | MR 2605327
,[19] Thurston obstructions and Ahlfors regular conformal dimension, J. Math. Pures Appl. 90 (2008), 229-241. | MR 2446078
& ,[20] Coarse expanding conformal dynamics, Astérisque 325 (2009). | MR 2662902
& ,[21] Lectures on analysis on metric spaces, Universitext, Springer, 2001. | MR 1800917
,[22] Conformal Assouad dimension and modulus, Geom. Funct. Anal. 14 (2004), 1278-1321. | MR 2135168
& ,[23] The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, 743-768. | MR 2275621
,[24] Conformal dimension does not assume values between zero and one, Duke Math. J. 134 (2006), 1-13. | MR 2239342
,[25] Dimensions conformes, espaces Gromov-hyperboliques et ensembles autosimilaires, in Séminaire de Théorie Spectrale et Géométrie. Vol. 22. Année 2003-2004, Sémin. Théor. Spectr. Géom. 22, Univ. Grenoble I, 2004, 153-182. | Numdam | MR 2136141
& ,[26] Conformal dimension; theory and application, University Lecture Series 54, Amer. Math. Soc., 2010. | MR 2662522
& ,[27] Dimension conforme et sphère à l'infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 177-212. | MR 1024425
,[28] Metric spaces and mappings seen at many scales, in Metric structures for Riemannian and Non-Riemmannian spaces (M. Gromov, éd.), Birkhäuser, 2001.
,[29] Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 97-114. | MR 595180
& ,[30] Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 23 (1998), 525-548. | MR 1642158
,[31] On measures with the doubling condition, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 666-675; English translation: Math. USSR-Izv. 30 (1988), 629-638. | MR 903629
& ,[32] Hausdorff dimension and doubling measures on metric spaces, Proc. Amer. Math. Soc. 126 (1998), 1453-1459. | MR 1443418
,