Inspirés par le travail de Zhidkov sur l'équation KdV, nous construisons des mesures gaussiennes à poids associées à une loi de conservation arbitraire de l'équation de Benjamin-Ono. Les supports de ces mesures sont constitués de fonctions de régularité de Sobolev croissantes. On démontre aussi une propriété-clé des mesures qui nous conduit à conjecturer leur invariance par le flot de l'équation.
Inspired by the work of Zhidkov on the KdV equation, we perform a construction of weighted Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation. The resulting measures are supported by Sobolev spaces of increasing regularity. We also prove a property on the support of these measures leading to the conjecture that they are indeed invariant by the flow of the Benjamin-Ono equation.
@article{ASENS_2013_4_46_2_249_0, author = {Tzvetkov, Nikolay and Visciglia, Nicola}, title = {Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {46}, year = {2013}, pages = {249-299}, doi = {10.24033/asens.2189}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2013_4_46_2_249_0} }
Tzvetkov, Nikolay; Visciglia, Nicola. Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation. Annales scientifiques de l'École Normale Supérieure, Tome 46 (2013) pp. 249-299. doi : 10.24033/asens.2189. http://gdmltest.u-ga.fr/item/ASENS_2013_4_46_2_249_0/
[1] Nonlocal models for nonlinear, dispersive waves, Phys. D 40 (1989), 360-392. | MR 1044731
, , & ,[2] Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys. 166 (1994), 1-26. | MR 1309539
,[3] Invariant measures for the D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys. 176 (1996), 421-445. | MR 1374420
,[4] Statistical mechanics of the -dimensional focusing nonlinear Schrödinger equation, Comm. Math. Phys. 182 (1996), 485-504. | MR 1447302
& ,[5] On well-posedness for the Benjamin-Ono equation, Math. Ann. 340 (2008), 497-542. | MR 2357995
& ,[6] Long time dynamics for the one dimensional non linear Schrödinger equation, to appear in Ann. Inst. Fourier.
, & ,[7] Global well-posedness of the Benjamin-Ono equation in low-regularity spaces, J. Amer. Math. Soc. 20 (2007), 753-798. | MR 2291918
& ,[8] Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys. 50 (1988), 657-687. | MR 939505
, & ,[9] Probability in Banach spaces, Ergebn. Math. Grenzg. 23, Springer, 1991. | MR 1102015
& ,[10] Bilinear transformation method, Mathematics in Science and Engineering 174, Academic Press Inc., 1984. | MR 759718
,[11] Global well-posedness in for the periodic Benjamin-Ono equation, Amer. J. Math. 130 (2008), 635-683. | MR 2418924
,[12] Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc. (JEMS) 14 (2012), 1275-1330. | MR 2928851
, , & ,[13] Global well-posedness of the Benjamin-Ono equation in , J. Hyperbolic Differ. Equ. 1 (2004), 27-49. | MR 2052470
,[14] Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation, Probab. Theory Related Fields 146 (2010), 481-514. | MR 2574736
,[15] Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory, Lecture Notes in Math. 1756, Springer, 2001. | MR 1831831
,