Travelling graphs for the forced mean curvature motion in an arbitrary space dimension
[Ondes progressives pour le mouvement par courbure moyenne forcée en toute dimension d'espace]
Monneau, Régis ; Roquejoffre, Jean-Michel ; Roussier-Michon, Violaine
Annales scientifiques de l'École Normale Supérieure, Tome 46 (2013), p. 217-248 / Harvested from Numdam

Nous construisons des ondes progressives sous la forme de graphes z=-ct+φ(x), φ:x N-1 φ(x), N2, solutions du mouvement par courbure moyenne forcée V n =-c 0 +κ (cc 0 ) en dimension N d’espace et avec un comportement asymptotique prescrit. Pour toute solution de viscosité φ , 1-homogène en espace, de l’équation eikonale |Dφ |=(c/c 0 ) 2 -1, nous mettons en évidence une solution régulière et concave du mouvement par courbure moyenne forcée dont le comportement asymptotique est donné par φ . Nous décrivons aussi φ en terme d’une mesure de probabilité sur la sphère 𝕊 N - 2 .

We construct travelling wave graphs of the form z=-ct+φ(x), φ:x N-1 φ(x), N2, solutions to the N-dimensional forced mean curvature motion V n =-c 0 +κ (cc 0 ) with prescribed asymptotics. For any 1-homogeneous function φ , viscosity solution to the eikonal equation |Dφ |=(c/c 0 ) 2 -1, we exhibit a smooth concave solution to the forced mean curvature motion whose asymptotics is driven by φ . We also describe φ in terms of a probability measure on  𝕊 N - 2 .

Publié le : 2013-01-01
DOI : https://doi.org/10.24033/asens.2188
Classification:  53C44,  35F21,  35C07,  35D40,  35K57
Mots clés: mouvement par courbure moyenne forcée, équation eikonale, équations de Hamilton-Jacobi, solutions de viscosité, équations de réaction diffusion, fronts progressifs
@article{ASENS_2013_4_46_2_217_0,
     author = {Monneau, R\'egis and Roquejoffre, Jean-Michel and Roussier-Michon, Violaine},
     title = {Travelling graphs for the forced mean curvature motion in an arbitrary space dimension},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {46},
     year = {2013},
     pages = {217-248},
     doi = {10.24033/asens.2188},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_2013_4_46_2_217_0}
}
Monneau, Régis; Roquejoffre, Jean-Michel; Roussier-Michon, Violaine. Travelling graphs for the forced mean curvature motion in an arbitrary space dimension. Annales scientifiques de l'École Normale Supérieure, Tome 46 (2013) pp. 217-248. doi : 10.24033/asens.2188. http://gdmltest.u-ga.fr/item/ASENS_2013_4_46_2_217_0/

[1] G. Barles, H. M. Soner & P. E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim. 31 (1993), 439-469. | MR 1205984

[2] L. A. Caffarelli & W. Littman, Representation formulas for solutions to Δu-u=0 in 𝐑 n , in Studies in partial differential equations, MAA Stud. Math. 23, Math. Assoc. America, 1982, 249-263. | MR 716508

[3] M. G. Crandall, H. Ishii & P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1-67. | MR 1118699

[4] L. C. Evans, Partial differential equations, Graduate Studies in Math. 19, Amer. Math. Soc., 1998. | MR 1625845

[5] P. C. Fife, Dynamics of internal layers and diffusive interfaces, CBMS-NSF Regional Conference Series in Applied Mathematics 53, Society for Industrial and Applied Mathematics (SIAM), 1988. | MR 981594

[6] D. Gilbarg & N. S. Trudinger, Elliptic partial differential equations of second order, Grundl. Math. Wiss. 224, Springer, 1977. | MR 473443

[7] F. Hamel, R. Monneau & J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst. 13 (2005), 1069-1096. | MR 2166719

[8] F. Hamel, R. Monneau & J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst. 14 (2006), 75-92. | MR 2170314

[9] C. Imbert, Convexity of solutions and C 1,1 estimates for fully nonlinear elliptic equations, J. Math. Pures Appl. 85 (2006), 791-807. | MR 2236244

[10] J. I. Kanelʼ, Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory, Mat. Sb. (N.S.) 59 (101) (1962), 245-288. | MR 157130

[11] P. De Mottoni & M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc. 347 (1995), 1533-1589. | MR 1672406

[12] H. Ninomiya & M. Taniguchi, Traveling curved fronts of a mean curvature flow with constant driving force, in Free boundary problems: theory and applications, I (Chiba, 1999), GAKUTO Internat. Ser. Math. Sci. Appl. 13, Gakkōtosho, 2000, 206-221. | MR 1793036

[13] H. Ninomiya & M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations 213 (2005), 204-233. | MR 2139343

[14] M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst. 32 (2012), 1011-1046. | MR 2851889