Nous construisons des ondes progressives sous la forme de graphes , , , solutions du mouvement par courbure moyenne forcée () en dimension d’espace et avec un comportement asymptotique prescrit. Pour toute solution de viscosité , -homogène en espace, de l’équation eikonale , nous mettons en évidence une solution régulière et concave du mouvement par courbure moyenne forcée dont le comportement asymptotique est donné par . Nous décrivons aussi en terme d’une mesure de probabilité sur la sphère .
We construct travelling wave graphs of the form , , , solutions to the -dimensional forced mean curvature motion () with prescribed asymptotics. For any -homogeneous function , viscosity solution to the eikonal equation , we exhibit a smooth concave solution to the forced mean curvature motion whose asymptotics is driven by . We also describe in terms of a probability measure on .
@article{ASENS_2013_4_46_2_217_0, author = {Monneau, R\'egis and Roquejoffre, Jean-Michel and Roussier-Michon, Violaine}, title = {Travelling graphs for the forced mean curvature motion in an arbitrary space dimension}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {46}, year = {2013}, pages = {217-248}, doi = {10.24033/asens.2188}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2013_4_46_2_217_0} }
Monneau, Régis; Roquejoffre, Jean-Michel; Roussier-Michon, Violaine. Travelling graphs for the forced mean curvature motion in an arbitrary space dimension. Annales scientifiques de l'École Normale Supérieure, Tome 46 (2013) pp. 217-248. doi : 10.24033/asens.2188. http://gdmltest.u-ga.fr/item/ASENS_2013_4_46_2_217_0/
[1] Front propagation and phase field theory, SIAM J. Control Optim. 31 (1993), 439-469. | MR 1205984
, & ,[2] Representation formulas for solutions to in , in Studies in partial differential equations, MAA Stud. Math. 23, Math. Assoc. America, 1982, 249-263. | MR 716508
& ,[3] User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1-67. | MR 1118699
, & ,[4] Partial differential equations, Graduate Studies in Math. 19, Amer. Math. Soc., 1998. | MR 1625845
,[5] Dynamics of internal layers and diffusive interfaces, CBMS-NSF Regional Conference Series in Applied Mathematics 53, Society for Industrial and Applied Mathematics (SIAM), 1988. | MR 981594
,[6] Elliptic partial differential equations of second order, Grundl. Math. Wiss. 224, Springer, 1977. | MR 473443
& ,[7] Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst. 13 (2005), 1069-1096. | MR 2166719
, & ,[8] Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst. 14 (2006), 75-92. | MR 2170314
, & ,[9] Convexity of solutions and estimates for fully nonlinear elliptic equations, J. Math. Pures Appl. 85 (2006), 791-807. | MR 2236244
,[10] Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory, Mat. Sb. (N.S.) 59 (101) (1962), 245-288. | MR 157130
,[11] Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc. 347 (1995), 1533-1589. | MR 1672406
& ,[12] Traveling curved fronts of a mean curvature flow with constant driving force, in Free boundary problems: theory and applications, I (Chiba, 1999), GAKUTO Internat. Ser. Math. Sci. Appl. 13, Gakkōtosho, 2000, 206-221. | MR 1793036
& ,[13] Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations 213 (2005), 204-233. | MR 2139343
& ,[14] Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst. 32 (2012), 1011-1046. | MR 2851889
,