Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps
[Réponse linéaire pour les déformations lisses d'applications unimodales génériques non-uniformément hyperboliques]
Baladi, Viviane ; Smania, Daniel
Annales scientifiques de l'École Normale Supérieure, Tome 45 (2012), p. 861-926 / Harvested from Numdam

Nous considérons des familles tf t d’applications unimodales C 4 , de récurrence postcritique lente, avec une dépendance C 2 en fonction du paramètre t. Nous montrons que l’unique mesure invariante μ t de f t est différentiable en fonction de t, en tant que distribution d’ordre 1. La preuve utilise des opérateurs de transfert sur des tours dont les bords sont mollifiés avec des fonctions de troncation lisses, pour éviter l’introduction de discontinuités artificielles. Nous donnons de plus une représentation de μ t dépendant d’une unique fonction lisse et des branches inverses de f t le long de l’orbite postcritique. Nous prouvons enfin que l’équation cohomologique tordue v=αf-f ' α admet une solution continue α, si f est Benedicks-Carleson et v est horizontal pour f.

We consider C 2 families tf t of C 4 unimodal maps f t whose critical point is slowly recurrent, and we show that the unique absolutely continuous invariant measure μ t of f t depends differentiably on t, as a distribution of order 1. The proof uses transfer operators on towers whose level boundaries are mollified via smooth cutoff functions, in order to avoid artificial discontinuities. We give a new representation of μ t for a Benedicks-Carleson map f t , in terms of a single smooth function and the inverse branches of f t along the postcritical orbit. Along the way, we prove that the twisted cohomological equation v=αf-f ' α has a continuous solution α, if f is Benedicks-Carleson and v is horizontal for f.

Publié le : 2012-01-01
DOI : https://doi.org/10.24033/asens.2179
Classification:  37C40,  37C30,  37D25,  37E05
Mots clés: applications unimodales lisses, réponse linéaire, Benedicks-Carleson, mesures SRB, mesures invariantes absolument continues, opérateur de transfert
@article{ASENS_2012_4_45_6_861_0,
     author = {Baladi, Viviane and Smania, Daniel},
     title = {Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {45},
     year = {2012},
     pages = {861-926},
     doi = {10.24033/asens.2179},
     mrnumber = {3075107},
     zbl = {1277.37045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_2012_4_45_6_861_0}
}
Baladi, Viviane; Smania, Daniel. Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps. Annales scientifiques de l'École Normale Supérieure, Tome 45 (2012) pp. 861-926. doi : 10.24033/asens.2179. http://gdmltest.u-ga.fr/item/ASENS_2012_4_45_6_861_0/

[1] J. F. Alves, M. Carvalho & J. M. Freitas, Statistical stability and continuity of SRB entropy for systems with Gibbs-Markov structures, Comm. Math. Phys. 296 (2010), 739-767. | MR 2628821 | Zbl 1196.82064

[2] J. F. Alves, M. Carvalho & J. M. Freitas, Statistical stability for Hénon maps of the Benedicks-Carleson type, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 595-637. | Numdam | MR 2595193 | Zbl 1205.37040

[3] A. Avila, Infinitesimal perturbations of rational maps, Nonlinearity 15 (2002), 695-704. | MR 1901100 | Zbl 1073.37051

[4] A. Avila, M. Lyubich & W. De Melo, Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math 154 (2003), 451-550. | MR 2018784 | Zbl 1050.37018

[5] A. Avila & C. G. Moreira, Bifurcations of unimodal maps, in Dynamical systems. Part II, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., 2003, 1-22. | MR 2071235 | Zbl 1070.37018

[6] A. Avila & C. G. Moreira, Phase-parameter relation and sharp statistical properties for general families of unimodal maps, in Geometry and dynamics, Contemp. Math. 389, Amer. Math. Soc., 2005, 1-42. | MR 2181956 | Zbl 1145.37022

[7] V. Baladi, On the susceptibility function of piecewise expanding interval maps, Comm. Math. Phys. 275 (2007), 839-859. | MR 2336367 | Zbl 1140.37327

[8] V. Baladi, Linear response despite critical points, Nonlinearity 21 (2008), T81-T90. | MR 2422371 | Zbl 1173.37016

[9] V. Baladi, Y. Jiang & H. H. Rugh, Dynamical determinants via dynamical conjugacies for postcritically finite polynomials. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays, J. Statist. Phys. 108 (2002), 973-993. | MR 1933441 | Zbl 1124.37310

[10] V. Baladi & D. Smania, Linear response formula for piecewise expanding unimodal maps, Nonlinearity 21 (2008), 677-711. | MR 2399821 | Zbl 1140.37008

[11] V. Baladi & D. Smania, Analyticity of the SRB measure for holomorphic families of quadratic-like Collet-Eckmann maps, Proc. Amer. Math. Soc. 137 (2009), 1431-1437. | MR 2465669 | Zbl 1170.37016

[12] V. Baladi & D. Smania, Smooth deformations of piecewise expanding unimodal maps, Discrete Contin. Dyn. Syst. 23 (2009), 685-703. | MR 2461821 | Zbl 1154.37340

[13] V. Baladi & D. Smania, Alternative proofs of linear response for piecewise expanding unimodal maps, Ergodic Theory and Dynam. Systems 30 (2010), 1-20. | MR 2586342 | Zbl 1230.37030

[14] V. Baladi & D. Smania, Corrigendum to: Linear response formula for piecewise expanding unimodal maps, Nonlinearity 25 (2012), 2203-2205. | MR 2947942 | Zbl 1244.37017

[15] V. Baladi & M. Viana, Strong stochastic stability and rate of mixing for unimodal maps, Ann. Sci. École Norm. Sup. 29 (1996), 483-517. | Numdam | MR 1386223 | Zbl 0868.58051

[16] M. Benedicks & L. Carleson, The dynamics of the Hénon map, Ann. of Math. 133 (1991), 73-169. | MR 1087346 | Zbl 0724.58042

[17] H. Bruin, S. Luzzatto & S. Van Strien, Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup. 36 (2003), 621-646. | Numdam | MR 2013929 | Zbl 1039.37021

[18] H. Bruin, J. Rivera-Letelier, W. Shen & S. Van Strien, Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math. 172 (2008), 509-533. | MR 2393079 | Zbl 1138.37019

[19] O. Butterley & C. Liverani, Smooth Anosov flows: correlation spectra and stability, J. Mod. Dyn. 1 (2007), 301-322. | MR 2285731 | Zbl 1144.37011

[20] B. Cessac, Does the complex susceptibility of the Hénon map have a pole in the upper-half plane? A numerical investigation, Nonlinearity 20 (2007), 2883-2895. | MR 2368329 | Zbl 1134.37037

[21] D. Dolgopyat, On differentiability of SRB states for partially hyperbolic systems, Invent. Math. 155 (2004), 389-449. | MR 2031432 | Zbl 1059.37021

[22] J. Graczyk, D. Sands & G. Świątek, La dérivée schwarzienne en dynamique unimodale, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 329-332. | Zbl 0983.37043

[23] M. Hairer & A. J. Majda, A simple framework to justify linear response theory, Nonlinearity 23 (2010), 909-922. | MR 2602020 | Zbl 1186.82006

[24] H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens, Proc. Amer. Math. Soc. 118 (1993), 627-634. | MR 1129880 | Zbl 0772.60049

[25] A. Katok, G. Knieper, M. Pollicott & H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows, Invent. Math. 98 (1989), 581-597. | MR 1022308 | Zbl 0702.58053

[26] G. Keller, Stochastic stability in some dynamical systems, Monatshefte Math. 94 (1982), 313-333. | MR 685377 | Zbl 0496.58010

[27] G. Keller, Exponents, attractors and Hopf decompositions for interval maps, Ergodic Theory Dynam. Systems 10 (1990), 717-744. | MR 1091423 | Zbl 0715.58020

[28] G. Keller, P. J. Howard & R. Klages, Continuity properties of transport coefficients in simple maps, Nonlinearity 21 (2008), 1719-1743. | MR 2425935 | Zbl 1153.37331

[29] G. Keller & C. Liverani, Stability of the spectrum for transfer operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999), 141-152. | Numdam | MR 1679080 | Zbl 0956.37003

[30] T. G. Keller & Nowicki, Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Comm. Math. Phys. 149 (1992), 633-680. | MR 1182410 | Zbl 0763.58024

[31] O. S. Kozlovski, Getting rid of the negative Schwarzian derivative condition, Ann. of Math. 152 (2000), 743-762. | MR 1815700 | Zbl 0988.37044

[32] S. Luzzatto & L. Wang, Topological invariance of generic non-uniformly expanding multimodal maps, Math. Res. Lett. 13 (2006), 343-357. | MR 2231123 | Zbl 1117.37024

[33] M. Martens, Distortion results and invariant Cantor sets of unimodal maps, Ergodic Theory Dynam. Systems 14 (1994), 331-349. | MR 1279474 | Zbl 0809.58026

[34] M. Martens & W. De Melo, The multipliers of periodic points in one-dimensional dynamics, Nonlinearity 12 (1999), 217-227. | MR 1677736 | Zbl 0989.37032

[35] M. Mazzolena, Dinamiche espansive unidimensionali: dipendenza della misura invariante da un parametro, Master's Thesis, Roma 2 (2007).

[36] W. De Melo & S. Van Strien, One-dimensional dynamics, Ergebnisse Math. Grenzg., Springer, 1993. | MR 1239171 | Zbl 0791.58003

[37] T. Nowicki, On some dynamical properties of S-unimodal maps on an interval, Fund. Math. 126 (1985), 27-43. | MR 817078 | Zbl 0608.58030

[38] T. Nowicki, Symmetric S-unimodal mappings and positive Liapunov exponents, Ergodic Theory Dynam. Systems 5 (1985), 611-616. | MR 829861 | Zbl 0615.28009

[39] T. Nowicki, Some dynamical properties of S-unimodal maps, Fund. Math. 142 (1993), 45-57. | MR 1207470 | Zbl 0821.58025

[40] T. Nowicki & F. Przytycki, Topological invariance of the Collet-Eckmann property for S-unimodal maps, Fund. Math. 155 (1998), 33-43. | MR 1487986 | Zbl 0898.58014

[41] T. Nowicki & D. Sands, Non-uniform hyperbolicity and universal bounds for S-unimodal maps, Invent. Math. 132 (1998), 633-680. | MR 1625708 | Zbl 0908.58016

[42] T. Nowicki & S. Van Strien, Hyperbolicity properties of C 2 multi-modal Collet-Eckmann maps without Schwarzian derivative assumptions, Trans. Amer. Math. Soc. 321 (1990), 793-810. | MR 994169 | Zbl 0731.58021

[43] T. Nowicki & S. Van Strien, Invariant measures exist under a summability condition for unimodal maps, Invent. Math. 105 (1991), 123-136. | MR 1109621 | Zbl 0736.58030

[44] F. Przytycki & J. Rivera-Letelier, Statistical properties of topological Collet-Eckmann maps, Ann. Sci. École Norm. Sup. 40 (2007), 135-178. | Numdam | MR 2332354 | Zbl 1115.37048

[45] D. Ruelle, Differentiation of SRB states, Comm. Math. Phys. 187 (1997), 227-241. | MR 1463827 | Zbl 0895.58045

[46] D. Ruelle, General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium, Phys. Lett. A 245 (1998), 220-224. | MR 1642617 | Zbl 0940.82035

[47] D. Ruelle, Differentiation of SRB states: Corrections and complements, Comm. Math. Phys. 234 (2003), 185-190. | MR 1963142 | Zbl 1019.37014

[48] D. Ruelle, Application of hyperbolic dynamics to physics: some problems and conjectures, Bull. Amer. Math. Soc. 41 (2004), 275-278. | MR 2058287 | Zbl 1102.37051

[49] D. Ruelle, Differentiating the absolutely continuous invariant measure of an interval map f with respect to f, Comm. Math. Phys. 258 (2005), 445-453. | MR 2171702 | Zbl 1080.37046

[50] D. Ruelle, A review of linear response theory for general differentiable dynamical systems, Nonlinearity 22 (2009), 855-870. | MR 2486360 | Zbl 1158.37305

[51] D. Ruelle, Structure and f-dependence of the A.C.I.M. for a unimodal map f of Misiurewicz type, Comm. Math. Phys. 287 (2009), 1039-1070. | MR 2486672 | Zbl 1202.37008

[52] D. Ruelle, Private communication by e-mail, 29 November 2009.

[53] M. Rychlik & E. Sorets, Regularity and other properties of absolutely continuous invariant measures for the quadratic family, Comm. Math. Phys. 150 (1992), 217-236. | MR 1194016 | Zbl 0770.58021

[54] D. Sands, Topological conditions for positive Lyapunov exponent in unimodal maps, Thèse, St John's College, 1994.

[55] S. Van Strien, One-parameter families of smooth interval maps, density of hyperbolicity and robust chaos, Proc. Amer. Math. Soc. 138 (2010), 4443-4446. | MR 2680068 | Zbl 1230.37049

[56] P. Thieullen, C. Tresser & L.-S. Young, Positive Lyapunov exponent for generic one-parameter families of unimodal maps, J. d'Anal. Math. 64 (1994), 121-172. | MR 1303510 | Zbl 0821.58015

[57] M. Tsujii, Positive Lyapunov exponents in families of one-dimensional dynamical systems, Invent. Math. 111 (1993), 113-137. | MR 1193600 | Zbl 0787.58029

[58] M. Tsujii, On continuity of Bowen-Ruelle-Sinai measures in families of one-dimensional maps, Comm. Math. Phys. 177 (1996), 1-11. | MR 1382217 | Zbl 0856.58027

[59] M. Viana, Stochastic dynamics of deterministic systems, 1997, 21 Colóquio Brasileiro de Matemática, IMPA, Rio de Janeiro (1997), available on http://w3.impa.br/~viana (under Lecture Notes).

[60] L. Wang, Topological and metrical conditions for Collet-Eckmann unimodal maps, Acta Math. Appl. Sinica (English Ser.) 17 (2001), 350-360. | MR 1877281 | Zbl 1154.37342

[61] L.-S. Young, Decay of correlations for certain quadratic maps, Comm. Math. Phys. 146 (1992), 123-138. | MR 1163671 | Zbl 0760.58030

[62] L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. 147 (1998), 585-650. | MR 1637655 | Zbl 0945.37009

[63] L.-S. Young, What are SRB measures, and which dynamical systems have them? Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthday, J. Statist. Phys. 108 (2002), 733-754. | MR 1933431 | Zbl 1124.37307