Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation
[Formes normales des perturbations analytiques des champs de vecteurs quasihomogènes  : rigidité, ensembles d'invariants analytiques et approximation exponentiellement petite]
Lombardi, Eric ; Stolovitch, Laurent
Annales scientifiques de l'École Normale Supérieure, Tome 43 (2010), p. 659-718 / Harvested from Numdam

Dans cet article, nous étudions des germes de champs de vecteurs holomorphes qui sont des perturbations « d’ordres supérieurs » de champs de vecteurs quasi-homogènes au voisinage de l’origine de n , point fixe des champs considérés. Nous définissons une condition « diophantienne » sur le champ quasi-homogène initial S qui assure que si une telle perturbation de S est formellement conjuguée à S alors elle l’est aussi holomorphiquement. Nous étudions le problème de mise sous forme normale relativement à S. Nous donnons une condition suffisante assurant l’existence d’une transformation holomorphe vers une forme normale. Lorsque cette condition n’est pas satisfaite, nous montrons néanmoins, sous une condition raisonnable, l’existence d’une normalisation formelle Gevrey vers une forme normale Gevrey. Enfin, nous montrons l’existence d’une approximation exponentiellement bonne de la dynamique par une forme normale partielle.

In this article, we study germs of holomorphic vector fields which are “higher order” perturbations of a quasihomogeneous vector field in a neighborhood of the origin of n , fixed point of the vector fields. We define a “Diophantine condition” on the quasihomogeneous initial part S which ensures that if such a perturbation of S is formally conjugate to S then it is also holomorphically conjugate to it. We study the normal form problem relatively to S. We give a condition on S that ensures that there always exists an holomorphic transformation to a normal form. If this condition is not satisfied, we also show, that under some reasonable assumptions, each perturbation of S admits a Gevrey formal normalizing transformation to a Gevrey formal normal form. Finally, we give an exponentially good approximation of the dynamic by a partial normal form.

Publié le : 2010-01-01
DOI : https://doi.org/10.24033/asens.2131
Classification:  37F50,  37F75,  37J40,  37J15,  34F15,  34C20,  34M35
Mots clés: Équations différentielles, petits diviseurs, résonances, formes normales
@article{ASENS_2010_4_43_4_659_0,
     author = {Lombardi, Eric and Stolovitch, Laurent},
     title = {Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {43},
     year = {2010},
     pages = {659-718},
     doi = {10.24033/asens.2131},
     mrnumber = {2722512},
     zbl = {1202.37071},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_2010_4_43_4_659_0}
}
Lombardi, Eric; Stolovitch, Laurent. Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation. Annales scientifiques de l'École Normale Supérieure, Tome 43 (2010) pp. 659-718. doi : 10.24033/asens.2131. http://gdmltest.u-ga.fr/item/ASENS_2010_4_43_4_659_0/

[1] V. I. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, 1980. | Zbl 0455.34001

[2] V. V. Basov, The generalized normal form and the formal equivalence of two-dimensional systems with zero quadratic approximation. III, Differ. Uravn. 42 (2006), 308-319. | MR 2290541 | Zbl 1244.34060

[3] G. R. Belitskii, Invariant normal forms of formal series, Funct. Anal. Appl. 13 (1979), 46-47. | MR 527522 | Zbl 0418.22009

[4] G. R. Belitskii, Normal forms relative to a filtering action of a group, Trans. Moscow Math. Soc. 2 (1981), 1-39. | Zbl 0472.58005

[5] R. I. Bogdanov, Local orbital normal forms of vector fields on the plane, Trudy Sem. Petrovsk. 5 (1979), 51-84. | MR 549622 | Zbl 0665.58029

[6] B. Braaksma & L. Stolovitch, Small divisors and large multipliers, Ann. Inst. Fourier (Grenoble) 57 (2007), 603-628. | Numdam | MR 2310952 | Zbl 1138.37028

[7] A. D. Bruno, Analytical form of differential equations, Trans. Moscow Math. Soc. 25 (1971), 131-288, 26 (1972), 199-239. | Zbl 0272.34018

[8] C. Camacho & P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. 115 (1982), 579-595. | MR 657239 | Zbl 0503.32007

[9] M. Canalis-Durand & R. Schäfke, Divergence and summability of normal forms of systems of differential equations with nilpotent linear part, Ann. Fac. Sci. Toulouse Math. 13 (2004), 493-513. | Numdam | MR 2116814 | Zbl 1169.34339

[10] H. Cartan, Formes différentielles. Applications élémentaires au calcul des variations et à la théorie des courbes et des surfaces, Hermann, 1967. | MR 231303 | Zbl 0184.12701

[11] D. Cerveau & R. Moussu, Groupes d’automorphismes de (𝐂,0) et équations différentielles ydy+=0, Bull. Soc. Math. France 116 (1988), 459-488. | Numdam | MR 1005391 | Zbl 0696.58011

[12] R. Cushman & J. A. Sanders, Nilpotent normal forms and representation theory of sl (2,𝐑), in Multiparameter bifurcation theory (Arcata, Calif., 1985), Contemp. Math. 56, Amer. Math. Soc., 1986, 31-51. | MR 855083 | Zbl 0604.58005

[13] P. Ebenfelt & H. S. Shapiro, The mixed Cauchy problem for holomorphic partial differential operators, J. Anal. Math. 65 (1995), 237-295. | MR 1335377 | Zbl 0836.35034

[14] J. Écalle, Sur les fonctions résurgentes, t.s I, II, III, Publ. Math. d'Orsay, 1981. | Zbl 0602.30029

[15] J. Écalle, Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble) 42 (1992), 73-164. | Numdam | MR 1162558 | Zbl 0940.32013

[16] C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet & G. Iooss, A simple global characterization for normal forms of singular vector fields, Phys. D 29 (1987), 95-127. | MR 923885 | Zbl 0633.58020

[17] E. Fischer, Über die Differentiationsprozesse der Algebra, J. für Math. 148 (1917), 1-78. | JFM 46.1436.02

[18] J.-P. Françoise, Sur les formes normales de champs de vecteurs, Boll. Un. Mat. Ital. A 17 (1980), 60-66. | MR 562114 | Zbl 0522.58044

[19] Y. Ilyashenko & S. Yakovenko, Lectures on analytic differential equations, Graduate Studies in Math. 86, Amer. Math. Soc., 2008. | MR 2363178 | Zbl 1186.34001

[20] G. Iooss & E. Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible 0 2+ iω resonance, C. R. Math. Acad. Sci. Paris 339 (2004), 831-838. | MR 2111718 | Zbl 1066.34041

[21] G. Iooss & E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differential Equations 212 (2005), 1-61. | MR 2130546 | Zbl 1072.34039

[22] H. Kokubu, H. Oka & D. Wang, Linear grading function and further reduction of normal forms, J. Differential Equations 132 (1996), 293-318. | MR 1422121 | Zbl 0876.34040

[23] E. Lombardi & L. Stolovitch, Forme normale de perturbation de champs de vecteurs quasi-homogènes, C. R. Math. Acad. Sci. Paris 347 (2009), 143-146. | MR 2538101 | Zbl 1161.37037

[24] F. Loray, Réduction formelle des singularités cuspidales de champs de vecteurs analytiques, J. Differential Equations 158 (1999), 152-173. | MR 1721724 | Zbl 0985.37014

[25] B. Malgrange, Travaux d'Écalle et de Martinet-Ramis sur les systèmes dynamiques, Séminaire Bourbaki, vol. 1981/82, exposé no 582, Astérisque 92-93 (1982), 59-73. | Numdam | MR 689526 | Zbl 0526.58009

[26] B. Malgrange, Sur le théorème de Maillet, Asymptotic Anal. 2 (1989), 1-4. | MR 991413 | Zbl 0693.34004

[27] J. Martinet & J.-P. Ramis, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math. I.H.É.S. 55 (1982), 63-164. | Numdam | MR 672182 | Zbl 0546.58038

[28] J. Martinet & J.-P. Ramis, Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. École Norm. Sup. 16 (1983), 571-621. | Numdam | MR 740592 | Zbl 0534.34011

[29] J. Murdock, Normal forms and unfoldings for local dynamical systems, Springer Monographs in Math., Springer, 2003. | MR 1941477 | Zbl 1014.37001

[30] E. Paul, Formal normal forms for the perturbations of a quasi-homogeneous Hamiltonian vector field, J. Dynam. Control Systems 10 (2004), 545-575. | MR 2095941 | Zbl 1068.37032

[31] J.-P. Ramis, Théorèmes d'indices Gevrey pour les équations différentielles ordinaires, Mem. Amer. Math. Soc. 48 (1984). | MR 733946 | Zbl 0555.47020

[32] H. S. Shapiro, An algebraic theorem of E. Fischer, and the holomorphic Goursat problem, Bull. London Math. Soc. 21 (1989), 513-537. | MR 1018198 | Zbl 0706.35034

[33] Y. Sibuya, Linear differential equations in the complex domain: problems of analytic continuation, Translations of Mathematical Monographs 82, Amer. Math. Soc., 1990. | MR 1084379 | Zbl 1145.34378

[34] L. Stolovitch, Sur les formes normales de systèmes nilpotents, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 355-358. | MR 1153714 | Zbl 0758.34026

[35] L. Stolovitch, Sur un théorème de Dulac, Ann. Inst. Fourier (Grenoble) 44 (1994), 1397-1433. | Numdam | MR 1313789 | Zbl 0820.34023

[36] L. Stolovitch, Classification analytique de champs de vecteurs 1-résonnants de (𝐂 n ,0), Asymptotic Anal. 12 (1996), 91-143. | MR 1386227 | Zbl 0852.58013

[37] L. Stolovitch, Singular complete integrability, Publ. Math. I.H.É.S. 91 (2000), 133-210. | MR 1828744 | Zbl 0997.32024

[38] L. Stolovitch, Normal form of holomorphic dynamical systems, in Hamiltonian dynamical systems and applications, NATO Sci. Peace Secur. Ser. B Phys. Biophys., Springer, 2008, 249-284. | MR 2446258 | Zbl 1146.37033

[39] L. Stolovitch, Progress in normal form theory, Nonlinearity 22 (2009), R77-R99. | MR 2519674 | Zbl 1175.37002

[40] E. Stróżyna & H. Żołądek, The analytic and formal normal form for the nilpotent singularity, J. Differential Equations 179 (2002), 479-537. | MR 1885678 | Zbl 1005.34034

[41] F. Takens, Singularities of vector fields, Publ. Math. I.H.É.S. 43 (1974), 47-100. | Numdam | MR 339292 | Zbl 0279.58009

[42] S. M. Voronin, Analytic classification of germs of conformal mappings (𝐂,0)(𝐂,0), Funktsional. Anal. i Prilozhen. 15 (1981), 1-17, 96. | MR 609790 | Zbl 0463.30010

[43] M. Yoshino & T. Gramchev, Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks, Ann. Inst. Fourier (Grenoble) 58 (2008), 263-297. | Numdam | MR 2401222 | Zbl 1137.37025