Non-orbit equivalent actions of 𝔽 n
[Actions non orbitalement équivalentes de 𝔽 n ]
Ioana, Adrian
Annales scientifiques de l'École Normale Supérieure, Tome 42 (2009), p. 675-696 / Harvested from Numdam

Pour tout 2n, nous construisons une famille concrète à un paramètre, des actions non orbitalement équivalentes du groupe libre 𝔽 n . Ces actions apparaissent comme produits diagonaux entre une action généralisée de Bernoulli et l’action 𝔽 n (𝕋 2 ,λ 2 ), où 𝔽 n est vu comme un sous-groupe de SL 2 ().

For any 2n, we construct a concrete 1-parameter family of non-orbit equivalent actions of the free group 𝔽 n . These actions arise as diagonal products between a generalized Bernoulli action and the action 𝔽 n (𝕋 2 ,λ 2 ), where 𝔽 n is seen as a subgroup of SL 2 ().

Publié le : 2009-01-01
DOI : https://doi.org/10.24033/asens.2106
Classification:  37A20,  46L10
Mots clés: groupes libres, équivalence orbitale
@article{ASENS_2009_4_42_4_675_0,
     author = {Ioana, Adrian},
     title = {Non-orbit equivalent actions of $\mathbb {F}\_n$},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {42},
     year = {2009},
     pages = {675-696},
     doi = {10.24033/asens.2106},
     mrnumber = {2568879},
     zbl = {1185.37009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_2009_4_42_4_675_0}
}
Ioana, Adrian. Non-orbit equivalent actions of $\mathbb {F}_n$. Annales scientifiques de l'École Normale Supérieure, Tome 42 (2009) pp. 675-696. doi : 10.24033/asens.2106. http://gdmltest.u-ga.fr/item/ASENS_2009_4_42_4_675_0/

[1] S. I. Bezuglyĭ & V. Y. Golodets, Hyperfinite and II 1 actions for nonamenable groups, J. Funct. Anal. 40 (1981), 30-44. | MR 607589 | Zbl 0496.22011

[2] M. Burger, Kazhdan constants for SL (3,𝐙), J. reine angew. Math. 413 (1991), 36-67. | MR 1089795 | Zbl 0704.22009

[3] A. Connes, J. Feldman & B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), 431-450. | MR 662736 | Zbl 0491.28018

[4] A. Connes & B. Weiss, Property T and asymptotically invariant sequences, Israel J. Math. 37 (1980), 209-210. | MR 599455 | Zbl 0479.28017

[5] H. A. Dye, On groups of measure preserving transformation. I, Amer. J. Math. 81 (1959), 119-159. | MR 131516 | Zbl 0087.11501

[6] I. Epstein, Orbit inequivalent actions of non-amenable groups, preprint arXiv:0707.4215, 2007.

[7] J. Feldman & C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234 (1977), 325-359. | MR 578730 | Zbl 0369.22010

[8] D. Gaboriau, On orbit equivalence of measure preserving actions, in Rigidity in dynamics and geometry (Cambridge, 2000), Springer, 2002, 167-186. | MR 1919400 | Zbl 1036.22008

[9] D. Gaboriau, Relative property (T) actions and trivial outer automorphism groups, preprint arXiv:0804.0358, 2008. | Zbl 1211.46071

[10] D. Gaboriau & R. Lyons, A measurable-group-theoretic solution to von Neumann's problem, Invent. Math. 177 (2009), 533-540. | MR 2534099 | Zbl 1182.43002

[11] D. Gaboriau & S. Popa, An uncountable family of nonorbit equivalent actions of 𝔽 n , J. Amer. Math. Soc. 18 (2005), 547-559. | MR 2138136 | Zbl 1155.37302

[12] S. L. Gefter & V. Y. Golodets, Fundamental groups for ergodic actions and actions with unit fundamental groups, Publ. Res. Inst. Math. Sci. 24 (1988), 821-847. | MR 1000122 | Zbl 0684.22003

[13] G. Hjorth, A converse to Dye's theorem, Trans. Amer. Math. Soc. 357 (2005), 3083-3103. | MR 2135736 | Zbl 1068.03035

[14] A. Ioana, Orbit inequivalent actions for groups containing a copy of 𝔽 2 , preprint arXiv:math/0701027, 2007. | MR 2810796 | Zbl 1230.37010

[15] A. Ioana, A relative version of Connes’ χ(M) invariant and existence of orbit inequivalent actions, Ergodic Theory Dynam. Systems 27 (2007), 1199-1213. | MR 2342972 | Zbl 1121.37006

[16] A. Ioana, Rigidity results for wreath product II 1 factors, J. Funct. Anal. 252 (2007), 763-791. | MR 2360936 | Zbl 1134.46041

[17] A. Ioana, J. Peterson & S. Popa, Amalgamated free products of weakly rigid factors and calculation of their symmetry groups, Acta Math. 200 (2008), 85-153. | MR 2386109 | Zbl 1149.46047

[18] V. F. R. Jones & K. Schmidt, Asymptotically invariant sequences and approximate finiteness, Amer. J. Math. 109 (1987), 91-114. | MR 878200 | Zbl 0638.28014

[19] Y. Kida, Classification of certain generalized Bernoulli actions of mapping class groups, preprint http://www.math.kyoto-u.ac.jp/~kida/papers/ber.pdf, 2008.

[20] N. Monod & Y. Shalom, Orbit equivalence rigidity and bounded cohomology, Ann. of Math. 164 (2006), 825-878. | MR 2259246 | Zbl 1129.37003

[21] F. J. Murray & J. Von Neumann, On rings of operators, Ann. of Math. 37 (1936), 116-229. | JFM 62.0449.03 | MR 1503275 | Zbl 0014.16101

[22] D. S. Ornstein & B. Weiss, Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), 161-164. | MR 551753 | Zbl 0427.28018

[23] D. S. Ornstein & B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1-141. | MR 910005 | Zbl 0637.28015

[24] K. Petersen, Ergodic theory, Cambridge Studies in Advanced Math. 2, Cambridge Univ. Press, 1983. | MR 833286 | Zbl 0507.28010

[25] S. Popa, On a class of type II 1 factors with Betti numbers invariants, Ann. of Math. 163 (2006), 809-899. | MR 2215135 | Zbl 1120.46045

[26] S. Popa, Some computations of 1-cohomology groups and construction of non-orbit-equivalent actions, J. Inst. Math. Jussieu 5 (2006), 309-332. | MR 2225044 | Zbl 1092.37003

[27] S. Popa, Strong rigidity of II 1 factors arising from malleable actions of w-rigid groups. I, Invent. Math. 165 (2006), 369-408. | MR 2231961 | Zbl 1120.46043

[28] S. Popa, Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid groups, Invent. Math. 170 (2007), 243-295. | MR 2342637 | Zbl 1131.46040

[29] S. Popa, Deformation and rigidity for group actions and von Neumann algebras, in International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, 445-477. | MR 2334200 | Zbl 1132.46038

[30] S. Popa, On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc. 21 (2008), 981-1000. | MR 2425177 | Zbl 1222.46048

[31] S. Popa & S. Vaes, Actions of 𝔽 whose II 1 factors and orbit equivalence relations have prescribed fundamental group, preprint arXiv:0803.3351, 2008, to appear in J. Amer. Math. Soc. | MR 2601038 | Zbl 1202.46069

[32] K. Schmidt, Amenability 1 (1981), 223-236. | MR 661821 | Zbl 0485.28019

[33] Y. Shalom, Measurable group theory, in European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, 391-423. | MR 2185757 | Zbl 1137.37301

[34] R. J. Zimmer, Ergodic theory and semisimple groups, Monographs in Math. 81, Birkhäuser, 1984. | MR 776417 | Zbl 0571.58015