Pour tout , nous construisons une famille concrète à un paramètre, des actions non orbitalement équivalentes du groupe libre . Ces actions apparaissent comme produits diagonaux entre une action généralisée de Bernoulli et l’action , où est vu comme un sous-groupe de .
For any , we construct a concrete 1-parameter family of non-orbit equivalent actions of the free group . These actions arise as diagonal products between a generalized Bernoulli action and the action , where is seen as a subgroup of .
@article{ASENS_2009_4_42_4_675_0, author = {Ioana, Adrian}, title = {Non-orbit equivalent actions of $\mathbb {F}\_n$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {42}, year = {2009}, pages = {675-696}, doi = {10.24033/asens.2106}, mrnumber = {2568879}, zbl = {1185.37009}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2009_4_42_4_675_0} }
Ioana, Adrian. Non-orbit equivalent actions of $\mathbb {F}_n$. Annales scientifiques de l'École Normale Supérieure, Tome 42 (2009) pp. 675-696. doi : 10.24033/asens.2106. http://gdmltest.u-ga.fr/item/ASENS_2009_4_42_4_675_0/
[1] Hyperfinite and actions for nonamenable groups, J. Funct. Anal. 40 (1981), 30-44. | MR 607589 | Zbl 0496.22011
& ,[2] Kazhdan constants for , J. reine angew. Math. 413 (1991), 36-67. | MR 1089795 | Zbl 0704.22009
,[3] An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), 431-450. | MR 662736 | Zbl 0491.28018
, & ,[4] Property and asymptotically invariant sequences, Israel J. Math. 37 (1980), 209-210. | MR 599455 | Zbl 0479.28017
& ,[5] On groups of measure preserving transformation. I, Amer. J. Math. 81 (1959), 119-159. | MR 131516 | Zbl 0087.11501
,[6] Orbit inequivalent actions of non-amenable groups, preprint arXiv:0707.4215, 2007.
,[7] Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234 (1977), 325-359. | MR 578730 | Zbl 0369.22010
& ,[8] On orbit equivalence of measure preserving actions, in Rigidity in dynamics and geometry (Cambridge, 2000), Springer, 2002, 167-186. | MR 1919400 | Zbl 1036.22008
,[9] Relative property () actions and trivial outer automorphism groups, preprint arXiv:0804.0358, 2008. | Zbl 1211.46071
,[10] A measurable-group-theoretic solution to von Neumann's problem, Invent. Math. 177 (2009), 533-540. | MR 2534099 | Zbl 1182.43002
& ,[11] An uncountable family of nonorbit equivalent actions of , J. Amer. Math. Soc. 18 (2005), 547-559. | MR 2138136 | Zbl 1155.37302
& ,[12] Fundamental groups for ergodic actions and actions with unit fundamental groups, Publ. Res. Inst. Math. Sci. 24 (1988), 821-847. | MR 1000122 | Zbl 0684.22003
& ,[13] A converse to Dye's theorem, Trans. Amer. Math. Soc. 357 (2005), 3083-3103. | MR 2135736 | Zbl 1068.03035
,[14] Orbit inequivalent actions for groups containing a copy of , preprint arXiv:math/0701027, 2007. | MR 2810796 | Zbl 1230.37010
,[15] A relative version of Connes’ invariant and existence of orbit inequivalent actions, Ergodic Theory Dynam. Systems 27 (2007), 1199-1213. | MR 2342972 | Zbl 1121.37006
,[16] Rigidity results for wreath product factors, J. Funct. Anal. 252 (2007), 763-791. | MR 2360936 | Zbl 1134.46041
,[17] Amalgamated free products of weakly rigid factors and calculation of their symmetry groups, Acta Math. 200 (2008), 85-153. | MR 2386109 | Zbl 1149.46047
, & ,[18] Asymptotically invariant sequences and approximate finiteness, Amer. J. Math. 109 (1987), 91-114. | MR 878200 | Zbl 0638.28014
& ,[19] Classification of certain generalized Bernoulli actions of mapping class groups, preprint http://www.math.kyoto-u.ac.jp/~kida/papers/ber.pdf, 2008.
,[20] Orbit equivalence rigidity and bounded cohomology, Ann. of Math. 164 (2006), 825-878. | MR 2259246 | Zbl 1129.37003
& ,[21] On rings of operators, Ann. of Math. 37 (1936), 116-229. | JFM 62.0449.03 | MR 1503275 | Zbl 0014.16101
& ,[22] Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), 161-164. | MR 551753 | Zbl 0427.28018
& ,[23] Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1-141. | MR 910005 | Zbl 0637.28015
& ,[24] Ergodic theory, Cambridge Studies in Advanced Math. 2, Cambridge Univ. Press, 1983. | MR 833286 | Zbl 0507.28010
,[25] On a class of type factors with Betti numbers invariants, Ann. of Math. 163 (2006), 809-899. | MR 2215135 | Zbl 1120.46045
,[26] Some computations of 1-cohomology groups and construction of non-orbit-equivalent actions, J. Inst. Math. Jussieu 5 (2006), 309-332. | MR 2225044 | Zbl 1092.37003
,[27] Strong rigidity of factors arising from malleable actions of -rigid groups. I, Invent. Math. 165 (2006), 369-408. | MR 2231961 | Zbl 1120.46043
,[28] Cocycle and orbit equivalence superrigidity for malleable actions of -rigid groups, Invent. Math. 170 (2007), 243-295. | MR 2342637 | Zbl 1131.46040
,[29] Deformation and rigidity for group actions and von Neumann algebras, in International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, 445-477. | MR 2334200 | Zbl 1132.46038
,[30] On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc. 21 (2008), 981-1000. | MR 2425177 | Zbl 1222.46048
,[31] Actions of whose II factors and orbit equivalence relations have prescribed fundamental group, preprint arXiv:0803.3351, 2008, to appear in J. Amer. Math. Soc. | MR 2601038 | Zbl 1202.46069
& ,[32] Amenability 1 (1981), 223-236. | MR 661821 | Zbl 0485.28019
,[33] Measurable group theory, in European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, 391-423. | MR 2185757 | Zbl 1137.37301
,[34] Ergodic theory and semisimple groups, Monographs in Math. 81, Birkhäuser, 1984. | MR 776417 | Zbl 0571.58015
,