Semisimple strata for p-adic classical groups
Stevens, Shaun
Annales scientifiques de l'École Normale Supérieure, Tome 35 (2002), p. 423-435 / Harvested from Numdam
@article{ASENS_2002_4_35_3_423_0,
     author = {Stevens, Shaun},
     title = {Semisimple strata for $p$-adic classical groups},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {35},
     year = {2002},
     pages = {423-435},
     doi = {10.1016/s0012-9593(02)01095-9},
     zbl = {1009.22017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_2002_4_35_3_423_0}
}
Stevens, Shaun. Semisimple strata for $p$-adic classical groups. Annales scientifiques de l'École Normale Supérieure, Tome 35 (2002) pp. 423-435. doi : 10.1016/s0012-9593(02)01095-9. http://gdmltest.u-ga.fr/item/ASENS_2002_4_35_3_423_0/

[1] Auzende F., Construction de types à la Bushnell et Kutzko dans les groupes Sp2N et SO2N, Prépublication 98-15 du LMENS, 1998.

[2] Blasco L., Blondel C., Types induits des paraboliques maximaux de Sp4(F) et GSp4(F), Ann. Inst. Fourier (Grenoble) 49 (6) (1999) 1805-1851. | Numdam | MR 1738067 | Zbl 0937.22010

[3] Broussous P., Minimal strata for GL(m,D), J. Reine Angew. Math. 514 (1) (1999) 199-236. | MR 1711267 | Zbl 0936.22011

[4] Broussous P., The building of GL(m,D) as a space of lattice functions, Preprint, King's College London, 1998.

[5] Bushnell C.J., Hereditary orders, Gauss sums, and supercuspidal representations of GLN, J. Reine Angew. Math. 375/376 (1987) 184-210. | MR 882297 | Zbl 0601.12025

[6] Bushnell C.J., Kutzko P.C., The Admissible Dual of GL(N) via Compact Open Subgroups, Princeton University Press, 1993. | MR 1204652

[7] Bushnell C.J., Kutzko P.C., Semisimple types, Compositio Math. 119 (1999) 53-97. | MR 1711578 | Zbl 0933.22027

[8] Bushnell C.J., Kutzko P.C., Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998) 582-634. | MR 1643417 | Zbl 0911.22014

[9] Bushnell C.J., Kutzko P.C., Supercuspidal representations of GL(N), Manuscript, King's College London, 1996.

[10] Howe R., Moy A., Minimal K-types for GLn over a p-adic field, SMF, Astérisque 171-172 (1989) 257-273. | MR 1021505 | Zbl 0715.22018

[11] Kutzko P.C., Towards a classification of the supercuspidal representations of GLN, J. London Math. Soc. (2) 37 (1988) 265-274. | MR 928523 | Zbl 0678.22009

[12] Lemaire B., Strates scindées pour un groupe réductif p-adique, C. R. Acad. Sci. Paris Sér. I Math. 326 (4) (1998) 407-410. | MR 1648959 | Zbl 0909.22035

[13] Morris L.E., Fundamental G-strata for p-adic classical groups, Duke Math. J. 64 (1991) 501-553. | MR 1141284 | Zbl 0799.22009

[14] Morris L.E., Tamely ramified supercuspidal representations of classical groups I: Filtrations, Ann. Sci. École Norm. Sup. (4) 24 (6) (1991) 705-738. | Numdam | MR 1142907 | Zbl 0756.20006

[15] Morris L.E., Level zero G-types, Compositio Math. 118 (2) (1999) 135-157. | MR 1713308 | Zbl 0937.22011

[16] Moy A., Prasad G., Unrefined minimal K-types for p-adic groups, Invent. Math. 116 (1994) 393-408. | MR 1253198 | Zbl 0804.22008

[17] Moy A., Prasad G., Jacquet functors and unrefined minimal K-types, Comment. Math. Helv. 71 (1) (1996) 98-121. | MR 1371680 | Zbl 0860.22006

[18] Pan S.-Y., Yu J.-K., Unrefined minimal K-types for p-adic classical groups, Manuscript, Princeton University, 1998.

[19] Stevens S., Double coset decompositions and intertwining, Manuscripta Math. 106 (2001) 349-364. | MR 1869226 | Zbl 0988.22008

[20] Stevens S., Intertwining and supercuspidal types for classical p-adic groups, Proc. London Math. Soc. (3) 83 (2001) 120-140. | MR 1829562 | Zbl 1017.22012