Dans ce papier on étudie l’existence et le comportement asymptotique des solutions de type ondes progressives à propagations finies de l’équation . On prouve que ces solutions existent si et seulement si et ou bien et . On donne aussi le comportement asymptotique de ces solutions.
In this paper we study the existence and the asymptotic behavior of traveling waves solutions for the equation . We prove that these solutions exist if and only if and or and . We introduce also the asymptotic behavior of these solutions.
@article{AMBP_2008__15_1_29_0, author = {Hamydy, Ahmed}, title = {L'existence et le comportement asymptotique des solutions d'ondes progressives pour une \'equation fortement non lin\'eaire}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {15}, year = {2008}, pages = {29-41}, doi = {10.5802/ambp.237}, zbl = {1163.35424}, mrnumber = {2418011}, language = {fr}, url = {http://dml.mathdoc.fr/item/AMBP_2008__15_1_29_0} }
Hamydy, Ahmed. L’existence et le comportement asymptotique des solutions d’ondes progressives pour une équation fortement non linéaire. Annales mathématiques Blaise Pascal, Tome 15 (2008) pp. 29-41. doi : 10.5802/ambp.237. http://gdmltest.u-ga.fr/item/AMBP_2008__15_1_29_0/
[1] S-Shaped biffurcation branch in quasilinear multivalued model arising in climatology, J. Diff Equ., Tome 150 (1998), pp. 215-225 | Article | MR 1660246 | Zbl 0921.35198
[2] Global Travelling Waves in Reaction- Convection- Diffusion Equations, J.Diff. Eq, Tome 165 (2000), pp. 377-413 | Article | MR 1772566 | Zbl 0961.34011
[3] Travelling waves and finite propagation in reaction-Diffusion equation, J.Diff. Eq, Tome 93 (1991), pp. 19-61 | Article | MR 1122305 | Zbl 0784.35045
[4] Matematical models in the Applied Sciences, Cambridge University press, Cambridge texts Applied Mathematics (1997) | MR 1483893 | Zbl 0997.00535
[5] Travelling Front and Free Boundary value problems, Numerical Treatment of Free Boundary Problems, Birkhäuser verlag (1981) | Zbl 0482.35050
[6] Ordinary Differential Equations, Walter de Gruyter (1996) | MR 1071170 | Zbl 0823.34001
[7] Thermal waves in absorption media, J.Diff.Eq, Tome 74 (1988), pp. 218-233 | Article | MR 952896 | Zbl 0665.35035
[8] Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Moskov, ser. Internat.Sec A 1,6 (1937), pp. 1-25 | Zbl 0018.32106
[9] Similarity solution for non-Newtonian fluids, A.T.CH.E. Journal, Tome 12 (1966) no. 4, pp. 700-708
[10] Travelling Wave Phenomena in Some degenerate Reaction-diffusion Equations, J.Dif. Eq., Tome 177 (1995), pp. 281-319 | Article | MR 1325800 | Zbl 0821.35085
[11] New travelling wave solutions for the Fisher equation with general exponents, Applied Mathematics Letters, Tome 18 (2005), pp. 1281-1285 | Article | MR 2170884 | Zbl 1082.35512