Discrete version of Dungey’s proof for the gradient heat kernel estimate on coverings
[Version discrète d’une preuve de Dungey pour les estimations du gradient du noyau de la chaleur sur les revêtements]
Ishiwata, Satoshi
Annales mathématiques Blaise Pascal, Tome 14 (2007), p. 93-102 / Harvested from Numdam

We obtain another proof of a Gaussian upper estimate for a gradient of the heat kernel on cofinite covering graphs whose covering transformation group has a polynomial volume growth. It is proved by using the temporal regularity of the discrete heat kernel obtained by Blunck [2] and Christ [3] along with the arguments of Dungey [7] on covering manifolds.

Publié le : 2007-01-01
DOI : https://doi.org/10.5802/ambp.229
Classification:  60J10,  58J35,  58J37
@article{AMBP_2007__14_1_93_0,
     author = {Ishiwata, Satoshi},
     title = {Discrete version of Dungey's proof for the gradient heat kernel estimate on coverings},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {14},
     year = {2007},
     pages = {93-102},
     doi = {10.5802/ambp.229},
     zbl = {1137.60033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AMBP_2007__14_1_93_0}
}
Ishiwata, Satoshi . Discrete version of Dungey’s proof for the gradient heat kernel estimate on coverings. Annales mathématiques Blaise Pascal, Tome 14 (2007) pp. 93-102. doi : 10.5802/ambp.229. http://gdmltest.u-ga.fr/item/AMBP_2007__14_1_93_0/

[1] Auscher, P.; Coulhon, T.; Duong, X. T.; Hofmann, S. Riesz transform on manifolds and heat kernel regurality, Ann. Scient. Éc. Norm. Sup., Tome 37 (2004), pp. 911-957 | Numdam | MR 2119242 | Zbl 02174958

[2] Blunck, S. Perturbation of analytic operators and temporal regularity, Colloq. Math., Tome 86 (2000), pp. 189-201 | MR 1808675 | Zbl 0961.47005

[3] Christ, M. Temporal regularity for random walk on discrete nilpotent groups, Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993). J. Fourier Anal. Appl., Tome Special Issue (1995), pp. 141-151 | MR 1364882 | Zbl 0889.60007

[4] Coulhon, T.; Duong, X. T. Riesz transforms for 1p2, Trans. Amer. Math. Soc., Tome 351 (1999), pp. 1151-1169 | Article | MR 1458299 | Zbl 0973.58018

[5] Davies, E. B. Non-gaussian aspects of heat kernel behaviour, J. London Math. Soc., Tome 55 (1997), pp. 105-125 | Article | MR 1423289 | Zbl 0879.35064

[6] Dungey, N. Heat kernel estimates and Riesz transforms on some Riemannian covering manifolds, Math. Z., Tome 247 (2004), pp. 765-794 | Article | MR 2077420 | Zbl 1080.58022

[7] Dungey, N. Some gradient estimates on covering manifolds, Bull. Pol. Acad. Sci. Math., Tome 52 (2004), pp. 437-443 | Article | MR 2128280 | Zbl 02170013

[8] Dungey, N. A note on time regularity for discrete time heat kernel, Semigroup Forum, Tome 72 (2006), pp. 404-410 | Article | MR 2228535 | Zbl 1102.47016

[9] Gromov, M. Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., Tome 53 (1981), pp. 53-73 | Article | Numdam | MR 623534 | Zbl 0474.20018

[10] Hebisch, W.; Saloff-Coste, L. Gaussian estimates for Markov chains and random walks on groups, Ann. Probab., Tome 21 (1993), pp. 673-709 | Article | MR 1217561 | Zbl 0776.60086

[11] Ishiwata, S. Asymptotic behavior of a transition probability for a random walk on a nilpotent covering graph, Contemp. Math., Tome 347 (2004), pp. 57-68 | MR 2077030 | Zbl 1061.22009

[12] Ishiwata, S. A Berry-Esseen type theorem on nilpotent covering graphs, Canad. J. Math., Tome 56 (2004), pp. 963-982 | Article | MR 2085630 | Zbl 1062.22018

[13] Russ, E. Riesz transform on graphs for p>2, unpublished manuscript