A flag on a manifold is an increasing sequence of foliations on this manifold, where for each , . The aim of this paper is to etablish that any flag of riemannian foliations on a compact and connected manifold, lifts on the bundle of transverse direct orthonormal frames of to a flag of transversally parallelizable foliations. This result permits us to obtain a classification of riemannian flags of a -dimensional compact manifold for which the dimension of the structural Lie algebra of the flow is equal to or .
@article{AMBP_2005__12_2_245_0, author = {Diallo, Hassimiou}, title = {Rel\`evement d'un drapeau riemannien et drapeaux de Lie du tore hyperbolique $n+1$-dimensionnel}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {12}, year = {2005}, pages = {245-258}, doi = {10.5802/ambp.206}, zbl = {1096.53032}, language = {fr}, url = {http://dml.mathdoc.fr/item/AMBP_2005__12_2_245_0} }
Diallo, Hassimiou. Relèvement d’un drapeau riemannien et drapeaux de Lie du tore hyperbolique $n+1$-dimensionnel. Annales mathématiques Blaise Pascal, Tome 12 (2005) pp. 245-258. doi : 10.5802/ambp.206. http://gdmltest.u-ga.fr/item/AMBP_2005__12_2_245_0/
[1] A class of stable foliations, Ergod. Th. and Dynam. Sys., Tome 13 (1993), pp. 667-704 | Article | MR 1257030 | Zbl 0801.58038
[2] Flots Riemanniens sur les 4-variétés compactes, Tôhoku Mathematical Journal, Tome 38 (1986), pp. 313-326 | Article | MR 843815 | Zbl 0603.57017
[3] Sur les drapeaux de feuilletages riemanniens, JP Journal of Geometry and Topology, University of Allahabad, INDIA, Tome 2 (2002), pp. 281-288 | MR 2110299
[4] Sur les drapeaux de Lie, Afrika Mathematika, Tome 13 (2002), pp. 75-86 | MR 1924534 | Zbl 1044.57010
[5] Feuilletages du plan. Feuilletages de Lie (1973) (Thèse d’Etat, Strasbourg)
[6] Géométrie globale des feuilletages riemanniens, Proc. Kon. Nederland Akad Ser. A, Tome 85 (1982), pp. 45-76 | MR 653455 | Zbl 0516.57016
[7] Flots riemanniens, Structures transverses des feuilletages, Astérisque, Tome 116 (1984), pp. 31-52 | MR 755161 | Zbl 0548.58033