A rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on 𝕋 3 from the dynamics of many-body quantum systems
Sohinger, Vedran
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015), p. 1337-1365 / Harvested from Numdam

In this paper, we will obtain a rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on the three-dimensional torus 𝕋 3 from the many-body limit of interacting bosonic systems. This type of result was previously obtained on 3 in the work of Erdős, Schlein, and Yau [54–57], and on 𝕋 2 and 2 in the work of Kirkpatrick, Schlein, and Staffilani [78]. Our proof relies on an unconditional uniqueness result for the Gross–Pitaevskii hierarchy at the level of regularity α=1, which is proved by using a modification of the techniques from the work of T. Chen, Hainzl, Pavlović and Seiringer [20] to the periodic setting. These techniques are based on the Quantum de Finetti theorem in the formulation of Ammari and Nier [6,7] and Lewin, Nam, and Rougerie [83]. In order to apply this approach in the periodic setting, we need to recall multilinear estimates obtained by Herr, Tataru, and Tzvetkov [74].Having proved the unconditional uniqueness result at the level of regularity α=1, we will apply it in order to finish the derivation of the defocusing cubic nonlinear Schrödinger equation on 𝕋 3 , which was started in the work of Elgart, Erdős, Schlein, and Yau [50]. In the latter work, the authors obtain all the steps of Spohn's strategy for the derivation of the NLS [108], except for the final step of uniqueness. Additional arguments are necessary to show that the objects constructed in [50] satisfy the assumptions of the unconditional uniqueness theorem. Once we achieve this, we are able to prove the derivation result. In particular, we show Propagation of Chaos��

Publié le : 2015-01-01
DOI : https://doi.org/10.1016/j.anihpc.2014.09.005
Classification:  35Q55,  70E55
@article{AIHPC_2015__32_6_1337_0,
     author = {Sohinger, Vedran},
     title = {A rigorous derivation of the defocusing cubic nonlinear Schr\"odinger equation on $ {\mathbb{T}}^{3}$ from the dynamics of many-body quantum systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {32},
     year = {2015},
     pages = {1337-1365},
     doi = {10.1016/j.anihpc.2014.09.005},
     mrnumber = {3425265},
     zbl = {1328.35220},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_6_1337_0}
}
Sohinger, Vedran. A rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on $ {\mathbb{T}}^{3}$ from the dynamics of many-body quantum systems. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 1337-1365. doi : 10.1016/j.anihpc.2014.09.005. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_6_1337_0/

[1] R. Adami, C. Bardos, F. Golse, A. Teta, Towards a rigorous derivation of the cubic nonlinear Schrödinger equation in dimension one, Asymptot. Anal. 40 no. 2 (2004), 93 -108 | MR 2104130 | Zbl 1069.35082

[2] R. Adami, F. Golse, A. Teta, Rigorous derivation of the cubic NLS in dimension one, J. Stat. Phys. 127 no. 6 (2007), 1193 -1220 | MR 2331036 | Zbl 1118.81021

[3] M. Aizenman, E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason, Bose–Einstein quantum phase transition in an optical lattice model, Phys. Rev. A 70 (2004), 023612 | Zbl 1170.82325

[4] M. Aizenman, E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason, Bose–Einstein condensation as a quantum phase transition in an optical lattice, Mathematical Physics of Quantum Mechanics, Lecture Notes in Physics vol. 690 (2006), 199 -215 | MR 2234912 | Zbl 1170.82325

[5] Z. Ammari, Systèmes hamiltoniens en théorie quantique des champs: dynamique asymptotique et limite classique, University of Rennes I (February 2013)

[6] Z. Ammari, F. Nier, Mean field limit for bosons and infinite dimensional phase-space analysis, Ann. Henri Poincaré 9 (2008), 1503 -1574 | MR 2465733 | Zbl 1171.81014

[7] Z. Ammari, F. Nier, Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, J. Math. Pures Appl. 95 (2011), 585 -626 | MR 2802894 | Zbl 1251.81062

[8] I. Anapolitanos, Rate of Convergence towards the Hartree-von Neumann limit in the mean-field regime, Lett. Math. Phys. 98 no. 1 (Oct. 2011), 1 -31 | MR 2836427

[9] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observations of Bose–Einstein condensation in a dilute atomic vapor, Science 269 (1995), 198 -201

[10] J. Arazy, More on convergence in unitary metric spaces, Proc. Am. Math. Soc. 83 (1981), 44 -48 | MR 619978 | Zbl 0473.47032

[11] C. Bardos, F. Golse, N. Mauser, Weak coupling limit of the N-particle Schrödinger equation, Methods Appl. Anal. 7 (2000), 275 -293 | MR 1869286 | Zbl 1003.81027

[12] N. Benedikter, M. Porta, B. Schlein, Mean-field evolution of Fermionic systems, http://arxiv.org/abs/1305.2768 (2013) | MR 3248060

[13] N. Benedikter, M. Porta, B. Schlein, Mean-field dynamics of Fermions with relativistic dispersion, http://arxiv.org/abs/1311.6270 (2013) | MR 3202863 | Zbl 1339.81103

[14] N. Benedikter, G. De Oliveira, B. Schlein, Quantitative derivation of the Gross–Pitaevskii equation, http://arxiv.org/abs/1208.0373 (2012) | MR 3366749 | Zbl 1320.35318

[15] S.N. Bose, Plancks Gesetz und Lichtquantenhypothese, Z. Phys. 26 (1924), 178 | JFM 51.0732.04

[16] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I: Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107 -156 | MR 1209299 | Zbl 0787.35097

[17] J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Commun. Math. Phys. 166 no. 1 (1994), 1 -26 | MR 1309539 | Zbl 0822.35126

[18] N. Burq, N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math. 173 no. 3 (2008), 449 -475 | MR 2425133 | Zbl 1156.35062

[19] L. Chen, J.O. Lee, B. Schlein, Rate of convergence towards Hartree dynamics, J. Stat. Phys. 144 no. 4 (2011), 872 -903 | MR 2826623 | Zbl 1227.82046

[20] T. Chen, C. Hainzl, N. Pavlović, R. Seiringer, Unconditional uniqueness for the cubic Gross–Pitaevskii hierarchy via quantum de Finetti, http://arxiv.org/abs/1307.3168 (2013) | MR 3385343 | Zbl 1326.35332

[21] T. Chen, C. Hainzl, N. Pavlović, R. Seiringer, On the well-posedness and scattering for the Gross–Pitaevskii hierarchy via quantum de Finetti, Lett. Math. Phys. 104 no. 7 (2014), 871 -891 | MR 3210237 | Zbl 1297.35214

[22] T. Chen, N. Pavlović, On the Cauchy problem for focusing and defocusing Gross–Pitaevskii hierarchies, Discrete Contin. Dyn. Syst. 27 no. 2 (2010), 715 -739 | MR 2600687 | Zbl 1190.35207

[23] T. Chen, N. Pavlović, Recent results on the Cauchy problem for focusing and defocusing Gross–Pitaevskii hierarchies, Math. Model. Nat. Phenom. 5 no. 4 (2010), 54 -72 | MR 2662450 | Zbl 1193.35206

[24] T. Chen, N. Pavlović, The quintic NLS as the mean field limit of a Boson gas with three-body interactions, J. Funct. Anal. 260 no. 4 (2011), 959 -997 | MR 2747009 | Zbl 1213.35368

[25] T. Chen, N. Pavlović, A new proof of existence of solutions for focusing and defocusing Gross–Pitaevskii hierarchies, Proc. Am. Math. Soc. 141 no. 1 (2013), 279 -293 | MR 2988730 | Zbl 1260.35197

[26] T. Chen, N. Pavlović, Higher order energy conservation and global well-posedness for Gross–Pitaevskii hierarchies, Commun. Partial Differ. Equ. 39 no. 9 (2014), 1597 -1634 | MR 3246036 | Zbl 1301.35146

[27] T. Chen, N. Pavlović, Derivation of the cubic NLS and Gross–Pitaevskii hierarchy from many-body dynamics in d=2,3 based on spacetime norms, Ann. Henri Poincaré 15 no. 3 (2014), 543 -588 | MR 3165917 | Zbl 1338.35406

[28] T. Chen, N. Pavlović, N. Tzirakis, Energy conservation and blowup of solutions for focusing and defocusing Gross–Pitaevskii hierarchies, Ann. Inst. Henri Poincaré (C), Anal. Non Linéaire 27 no. 5 (2010), 1271 -1290 | Numdam | MR 2683760 | Zbl 1200.35253

[29] T. Chen, N. Pavlović, N. Tzirakis, Multilinear Morawetz identities for the Gross–Pitaevskii hierarchy, Recent Advances in Harmonic Analysis and Partial Differential Equations, Contemp. Math. vol. 581 , Amer. Math. Soc., Providence, RI (2012), 39 -62 | MR 3013052 | Zbl 1317.35229

[30] T. Chen, K. Taliaferro, Positive semidefiniteness and global well-posedness of solutions to the Gross–Pitaevskii hierarchy, http://arxiv.org/abs/1305.1404 (2013) | MR 3246038

[31] X. Chen, The Grillakis–Machedon–Margetis second order corrections to mean field evolution for weakly interacting bosons in the case of 3-body interactions, http://arxiv.org/abs/0911.4153 (2009)

[32] X. Chen, Second order corrections to mean field evolution for weakly interacting bosons in the case of three-body interactions, Arch. Ration. Mech. Anal. 203 (2012), 455 -497 | MR 2885567 | Zbl 1256.35099

[33] X. Chen, Collapsing estimates and the Rigorous derivation of the 2d cubic nonlinear Schrödinger equation with anisotropic switchable quadratic traps, J. Math. Pures Appl. (9) 98 no. 4 (2012), 450 -478 | MR 2968164 | Zbl 1251.35144

[34] X. Chen, On the rigorous derivation of the 3D cubic nonlinear Schrödinger equation with a quadratic trap, Arch. Ration. Mech. Anal. 210 no. 2 (2013), 365 -408 | MR 3101788 | Zbl 1294.35132

[35] X. Chen, J. Holmer, On the rigorous derivation of the 2D cubic nonlinear Schrödinger equation from 3D quantum many-body dynamics, Arch. Ration. Mech. Anal. 210 no. 3 (2013), 909 -954 | MR 3116008 | Zbl 1288.35429

[36] X. Chen, J. Holmer, On the Klainerman–Machedon conjecture of the quantum BBGKY hierarchy with self-interaction, J. Eur. Math. Soc. (2013) | MR 3500833 | Zbl 1342.35322

[37] X. Chen, J. Holmer, Focusing quantum many-body dynamics: the Rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation, http://arxiv.org/abs/1308.3895 (2013) | Zbl 1338.35407

[38] X. Chen, J. Holmer, Focusing quantum many-body dynamics II: the Rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation from 3D, http://arxiv.org/abs/1407.8457 (2014) | MR 3488534

[39] X. Chen, J. Holmer, Correlation structures, many-body scattering processes and the derivation of the Gross–Pitaevskii hierarchy, http://arxiv.org/abs/1409.1425 (2014) | MR 3551830

[40] X. Chen, P. Smith, On the unconditional uniqueness of solutions to the infinite radial Chern–Simons–Schrödinger hierarchy, http://arxiv.org/abs/1406.2649 (2014) | MR 3293448 | Zbl 1307.35273

[41] Z. Chen, C. Liu, On the Cauchy problem for Gross–Pitaevskii hierarchies, J. Math. Phys. 52 no. 3 (2011), 032103 | MR 2814691 | Zbl 1315.35199

[42] J. Conway, A Course in Operator Theory, Graduate Studies in Mathematics vol. 21 , American Mathematical Society, Providence, RI (1991) | MR 1721402

[43] K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. Van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose–Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75 no. 22 (1995), 3969 -3973

[44] B. de Finetti, Funzione caratteristica di un fenomeno aleatorio, Mem. R. Accad. Lincei 4, 86–133.

[45] B. De Finetti, La pr'evision: ses lois logiques, ses sources subiectives, Ann. Inst. Henri Poincaré 7 no. 1 (1937) | JFM 63.1070.02 | MR 1508036

[46] G. Dell' Antonio, On the limits of sequences of normal states, Commun. Pure Appl. Math. 20 (1967), 413 -429 | MR 209854

[47] P. Diaconis, D. Freedman, Finite exchangeable sequences, Ann. Probab. 8 (1980), 745 -764 | MR 577313 | Zbl 0434.60034

[48] E.B. Dynkin, Classes of equivalent random quantities, Usp. Mat. Nauk 8 (1953), 125 -130 | MR 55601

[49] A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitz.ber. Preuss. Akad. Wiss. (Berl.), Phys.-math. Kl. 1 no. 3 (1925), 18 -25 | JFM 51.0755.03

[50] A. Elgart, L. Erdős, B. Schlein, H.-T. Yau, Gross–Pitaevskii equation as the mean field limit of weakly coupled bosons, Arch. Ration. Mech. Anal. 179 (2006), 265 -283 | MR 2209131 | Zbl 1086.81035

[51] A. Elgart, B. Schlein, Mean field dynamics of boson stars, Commun. Pure Appl. Math. 60 no. 4 (2007), 500 -545 | MR 2290709 | Zbl 1113.81032

[52] L. Erdős, B. Schlein, Quantum dynamics with mean field interactions: a new approach, J. Stat. Phys. 134 no. 5 (2009), 859 -870 | MR 2518972 | Zbl 1173.82016

[53] L. Erdős, B. Schlein, H.-T. Yau, Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate, Commun. Pure Appl. Math. 59 no. 12 (2006), 1659 -1741 | MR 2257859 | Zbl 1122.82018

[54] L. Erdős, B. Schlein, H.-T. Yau, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems, Invent. Math. 167 no. 3 (2007), 515 -614 | MR 2276262 | Zbl 1123.35066

[55] L. Erdős, B. Schlein, H.-T. Yau, Rigorous derivation of the Gross–Pitaevskii equation, Phys. Rev. Lett. 98 no. 4 (2007), 040404

[56] L. Erdős, B. Schlein, H.-T. Yau, Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential, J. Am. Math. Soc. 22 no. 4 (2009), 1099 -1156 | MR 2525781 | Zbl 1207.82031

[57] L. Erdős, B. Schlein, H.-T. Yau, Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate, Ann. Math. (2) 172 no. 1 (2010), 291 -370 | MR 2680421 | Zbl 1204.82028

[58] L. Erdős, H.-T. Yau, Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys. 5 no. 6 (2001), 1169 -1205 | MR 1926667 | Zbl 1014.81063

[59] J. Fröhlich, S. Graffi, S. Schwarz, Mean-field and classical limit of many body Schrödinger dynamics for bosons, Commun. Math. Phys. 271 no. 3 (2007), 681 -697 | MR 2291792 | Zbl 1172.82011

[60] J. Fröhlich, A. Knowles, A. Pizzo, Atomism and quantization, J. Phys. A 40 no. 12 (2007), 3033 -3045 | MR 2313859 | Zbl 1115.81071

[61] J. Fröhlich, A. Knowles, S. Schwarz, On the mean-field limit of bosons with Coulomb two-body interaction, Commun. Math. Phys. 288 no. 3 (2009), 1023 -1059 | MR 2504864 | Zbl 1177.82016

[62] J. Fröhlich, E. Lenzmann, Mean-field limit of quantum Bose gases and nonlinear Hartree equation, Sem. É.D.P. 2003–2004, Exp. No. XIX, Sémin. Équ. Dériv. Partielles , École Polytech, Palaiseau (2004) | Numdam | MR 2117050 | Zbl 1292.81040

[63] J. Fröhlich, T.-P. Tsai, H.-T. Yau, On a classical limit of quantum theory and the non-linear Hartree equation, Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud. vol. 21 , Kluwer Acad. Publ., Dordrecht (2000), 189 -207 | MR 1805891 | Zbl 1071.81543

[64] J. Fröhlich, T.-P. Tsai, H.-T. Yau, On a classical limit of quantum theory and the non-linear Hartree equation, GAFA 2000, Tel Aviv, 1999, special volume, part I, Geom. Funct. Anal. (2000), 57 -78 | MR 1826249 | Zbl 1050.81015

[65] J. Fröhlich, T.-P. Tsai, H.-T. Yau, On the point-particle (Newtonian) limit of the non-linear Hartree equation, Commun. Math. Phys. 225 no. 2 (2002), 223 -274 | MR 1889225 | Zbl 1025.81015

[66] J. Ginibre, G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems I, Commun. Math. Phys. 66 no. 1 (1979), 37 -76 | MR 530915 | Zbl 0443.35067

[67] J. Ginibre, G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems II, Commun. Math. Phys. 68 no. 1 (1979), 45 -68 | MR 539736 | Zbl 0443.35068

[68] P. Gressman, V. Sohinger, G. Staffilani, On the uniqueness of solutions to the periodic 3D Gross–Pitaevskii hierarchy, J. Funct. Anal. 266 no. 7 (2014), 4705 -4764 | MR 3170216 | Zbl 1297.35215

[69] M. Grillakis, M. Machedon, Pair excitations and the mean field approximation of interacting bosons, I, Commun. Math. Phys. 324 no. 2 (2013), 601 -636 | MR 3117522 | Zbl 1277.82034

[70] M. Grillakis, M. Machedon, D. Margetis, Second order corrections to mean field evolution of weakly interacting bosons, I, Commun. Math. Phys. 294 (2010), 273 -301 | MR 2575484 | Zbl 1208.82030

[71] M. Grillakis, M. Machedon, D. Margetis, Second order corrections to mean field evolution of weakly interacting bosons, II, Adv. Math. 228 no. 3 (2011), 1788 -1815 | MR 2824569 | Zbl 1226.82033

[72] E. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento 20 (1961), 454 -466 | MR 128907 | Zbl 0100.42403

[73] K. Hepp, The classical limit for quantum mechanical correlation functions, Commun. Math. Phys. 35 (1974), 265 -277 | MR 332046

[74] S. Herr, D. Tataru, N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in H 1 (𝕋 3 ) , Duke Math. J. 159 no. 2 (2011), 329 -349 | Zbl 1230.35130

[75] E. Hewitt, L.J. Savage, Symmetric measures on Cartesian products, Trans. Am. Math. Soc. 80 (1955), 470 -501 | MR 76206 | Zbl 0066.29604

[76] Y. Hong, K. Taliaferro, Z. Xie, Unconditional uniqueness of the cubic Gross–Pitaevskii hierarchy with low regularity, http://arxiv.org/abs/1402.5347 (2014) | MR 3395127

[77] R.L. Hudson, G.R. Moody, Locally normal symmetric states and an analogue of de Finetti's theorem, Z. Wahrscheinlichkeitstheor. Verw. Geb. 33 (1975/1976), 343 -351 | MR 397421 | Zbl 0304.60001

[78] K. Kirkpatrick, B. Schlein, G. Staffilani, Derivation of the cubic nonlinear Schrödinger equation from quantum dynamics of many-body systems: the periodic case, Am. J. Math. 133 no. 1 (2011), 91 -130 | MR 2752936 | Zbl 1208.81080

[79] S. Klainerman, M. Machedon, Space-time estimates for null forms and the local existence theorem, Commun. Pure Appl. Math. 46 (1993), 169 -177 | MR 1231427 | Zbl 0803.35095

[80] S. Klainerman, M. Machedon, On the uniqueness of solutions to the Gross–Pitaevskii hierarchy, Commun. Math. Phys. 279 no. 1 (2008), 169 -185 | MR 2377632 | Zbl 1147.37034

[81] A. Knowles, P. Pickl, Mean-field dynamics: singular potentials and rate of convergence, Commun. Math. Phys. 298 no. 1 (2010), 101 -139 | MR 2657816 | Zbl 1213.81180

[82] J.O. Lee, Rate of convergence towards semi-relativistic Hartree dynamics, Ann. Henri Poincaré 14 no. 2 (2013), 313 -346 | MR 3028041 | Zbl 1267.81305

[83] M. Lewin, P.T. Nam, N. Rougerie, Derivation of Hartree's theory for generic mean-field Bose systems, Adv. Math. 254 (2014), 570 -621 | MR 3161107 | Zbl 1316.81095

[84] M. Lewin, P.T. Nam, N. Rougerie, Remarks on the quantum de Finetti theorem for bosonic systems, http://arxiv.org/abs/1310.2200 (2013) | MR 3335056 | Zbl 1310.81169

[85] M. Lewin, P.T. Nam, N. Rougerie, The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases, http://arxiv.org/abs/1405.3220 (2014) | MR 3461029

[86] M. Lewin, J. Sabin, The Hartree equation for infinitely many particles. I. Well-posedness theory, Commun. Math. Phys. (2013) | MR 3304272

[87] M. Lewin, J. Sabin, The Hartree equation for infinitely many particles. II. Dispersion and scattering in 2D, http://arxiv.org/abs/1310.0604 (2013) | MR 3270166

[88] E. Lieb, R. Seiringer, Proof of Bose–Einstein condensation for dilute trapped gases, Phys. Rev. Lett. 88 (2002), 170409-1 -170409-4

[89] E. Lieb, R. Seiringer, J.P. Solovej, The quantum-mechanical many-body problem: the Bose gas, Perspectives in Analysis, Math. Phys. Stud. vol. 27 , Springer, Berlin (2005), 97 -183 | MR 2215726 | Zbl 1113.82007

[90] E. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason, The Mathematics of the Bose Gas and Its Condensation, Oberwolfach Seminars vol. 34 , Birkhäuser Verlag, Basel (2005) | MR 2143817 | Zbl 1104.82012

[91] E. Lieb, R. Seiringer, J. Yngvason, Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional, Phys. Rev. A 61 (2000), 043602

[92] E. Lieb, R. Seiringer, J. Yngvason, A rigorous derivation of the Gross–Pitaevskii energy functional for a two-dimensional Bose gas. Dedicated to Joel L. Lebowitz, Commun. Math. Phys. 224 no. 1 (2001), 17 -31 | MR 1868990 | Zbl 0996.82010

[93] J. Lührmann, Mean-field quantum dynamics with magnetic fields, J. Math. Phys. 53 no. 2 (2012), 022105 | MR 2920451 | Zbl 1274.81085

[94] A. Michelangeli, Equivalent definitions of asymptotic 100bad hbox BEC, Il Nuovo Cimento B 123 no. 2 (2008), 181 -192

[95] A. Michelangeli, B. Schlein, Dynamical collapse of boson stars, Commun. Math. Phys. 311 no. 3 (2012), 645 -687 | MR 2909759 | Zbl 1242.85007

[96] P. Pickl, Derivation of the time dependent Gross–Pitaevskii equation with external fields, J. Stat. Phys. 140 no. 1 (2010), 76 -89 | MR 2651439 | Zbl 1202.82059

[97] P. Pickl, A simple derivation of mean field limits for quantum systems, Lett. Math. Phys. 97 no. 2 (2011), 151 -164 | MR 2821235 | Zbl 1242.81150

[98] L. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP 13 (1961), 451 -454

[99] M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis, Academic Press, San Diego, CA (1975) | MR 493420

[100] D.W. Robinson, Normal and locally normal states, Commun. Math. Phys. 19 (1970), 219 -234 | MR 278661 | Zbl 0202.27701

[101] I. Rodnianski, B. Schlein, Quantum fluctuations and rate of convergence towards mean field dynamics, Commun. Math. Phys. 291 no. 1 (2009), 31 -61 | MR 2530155 | Zbl 1186.82051

[102] W. Rudin, Functional Analysis, McGraw–Hill Series in Higher Mathematics , McGraw–Hill Book Co., New York, NY (1991) | MR 1157815 | Zbl 0867.46001

[103] B. Schlein, Derivation of effective evolution equations from microscopic quantum dynamics, D. Ellwood, I. Rodnianski, G. Staffilani, J. Wunsch (ed.), Evolution Equations, Clay Mathematics Proceedings vol. 17 (2013) | MR 3087333

[104] B. Simon, Convergence in trace ideals, Proc. Am. Math. Soc. 83 (1981), 39 -43 | MR 619977 | Zbl 0473.47031

[105] B. Simon, Trace Ideals and Their Applications, Mathematical Surveys and Monographs vol. 120 , American Mathematical Society, Providence, RI (2005) | MR 2154153 | Zbl 1074.47001

[106] V. Sohinger, Local existence of solutions to randomized Gross–Pitaevskii hierarchies, Trans. Am. Math. Soc. (2014) | MR 3449225 | Zbl 1341.35151

[107] V. Sohinger, G. Staffilani, Randomization and the Gross–Pitaevskii hierarchy, http://arxiv.org/abs/1308.3714 (2013) | MR 3360742 | Zbl 06482498

[108] H. Spohn, Kinetic equations from Hamiltonian dynamics, Rev. Mod. Phys. 52 no. 3 (1980), 569 -615 | MR 578142

[109] E. Størmer, Symmetric states of infinite tensor products of C algebras, J. Funct. Anal. 3 (1969), 48 -68 | MR 241992 | Zbl 0167.43403

[110] N. Strunk, Strichartz estimates for Schrödinger equations on irrational tori in two and three dimensions, http://arxiv.org/abs/1401.6080 (2014) | MR 3276862 | Zbl 1315.35210

[111] Z. Xie, Derivation of a nonlinear Schrödinger equation with a general power-type nonlinearity, http://arxiv.org/abs/1305.7240 (2013) | MR 3328130