We consider a small random perturbation of the energy functional for , where the non-local part denotes the total contribution from in the Gagliardo semi-norm of u and W is a double well potential. We show that there exists, as Λ invades , for almost all realizations of the random term a minimizer under compact perturbations, which is unique when , and when , . This uniqueness is a consequence of the randomness. When the random term is absent, there are two minimizers which are invariant under translations in space, .
@article{AIHPC_2015__32_3_593_0, author = {Dirr, Nicolas and Orlandi, Enza}, title = {Uniqueness of the minimizer for a random non-local functional with double-well potential in $ d\leq 2$ }, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {32}, year = {2015}, pages = {593-622}, doi = {10.1016/j.anihpc.2014.02.002}, zbl = {1320.35355}, mrnumber = {3353702}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_3_593_0} }
Dirr, Nicolas; Orlandi, Enza. Uniqueness of the minimizer for a random non-local functional with double-well potential in $ d\leq 2$ . Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 593-622. doi : 10.1016/j.anihpc.2014.02.002. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_3_593_0/
[1] Rounding effects on quenched randomness on first-order phase transitions, Commun. Math. Phys. 130 (1990), 489 -528 | MR 1060388 | Zbl 0714.60090
, ,[2] Statistical Mechanics of Disordered Systems. A Mathematical Perspective, Cambridge University Press (2012) | MR 2252929 | Zbl 1246.82001
,[3] Lévy flights in external force fields: from models to equations, Chem. Phys. 284 (2002), 409 -421
, ,[4] Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521 -573 | MR 2944369 | Zbl 1252.46023
, , ,[5] Anomalous jumping in a double-well potential, Phys. Rev. E 60 (1999), 172 -179
,[6] Sharp-interface limit of a Ginzburg–Landau functional with a random external field, SIAM J. Math. Anal. 41 (2009), 781 -824 | MR 2515785 | Zbl 1202.35313
, ,[7] Unique minimizer for a random functional with double well potential in dimension 1 and 2, Commun. Math. Sci. 1 (2011), 331 -351 | MR 2815675 | Zbl 1219.35380
, ,[8] A variational model for dislocation in the line tension limit, Arch. Ration. Mech. Anal. 81 (2006), 535 -578 | MR 2231783 | Zbl 1158.74365
, ,[9] A singular perturbation result with a fractional norm, Variational Problem in Material Sciences, Prog. Nonlinear Differ. Equ. Appl. vol. 68 (2006), 111 -126 | MR 2223366 | Zbl 1107.82019
, ,[10] Gamma convergence of an energy functional related to the fractional Laplacian, Calc. Var. Partial Differ. Equ. 36 (2009), 173 -210 | MR 2546026
,[11] Martingale Limit Theory and Its Application, Academic Press, New York (1980) | MR 624435 | Zbl 0462.60045
, ,[12] Equilibrium States in Ergodic Theory, London Math. Soc. Stud. Texts vol. 42 (1998) | MR 1618769 | Zbl 0896.28006
,[13] The random walk's guide to anomalous diffusion: a fractional dynamical approach, Phys. Rep. 339 (2000), 1 -77 | MR 1809268 | Zbl 0984.82032
, ,[14] Local and global minimizers for a variational energy involving fractional norm, Ann. Mat. Pura Appl. 92 (2013), 673 -718 | MR 3081641 | Zbl 1278.82022
, , ,[15] Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser. , Chapman & Hall, CRC, Boca Raton (2004) | MR 2042661 | Zbl 1052.91043
, ,[16] Γ-convergence for nonlocal phase transitions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 29 (2012), 479 -500 | Numdam | MR 2948285 | Zbl 1253.49008
, ,[17] Density estimates for a variational model driven by the Gagliardo norm, J. Math. Pures Appl. 9 (2014), 1 -26 | MR 3133422 | Zbl 1278.49016
, ,[18] Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 (2014), 133 -154 | MR 3161511 | Zbl 1292.35315
, ,[19] Regularity of the obstacle problem for a fractional power of the Laplacian operator, Commun. Pure Appl. Math. 60 (2007), 67 -112 | MR 2270163 | Zbl 1141.49035
,[20] Fractional diffusion and Lévy stable processes, Phys. Rev. E 55 (1997), 99 -106 | MR 1429568
, , , ,