Uniqueness of the minimizer for a random non-local functional with double-well potential in d 2
Dirr, Nicolas ; Orlandi, Enza
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015), p. 593-622 / Harvested from Numdam

We consider a small random perturbation of the energy functional [u] H s (Λ, d ) 2 + ΛW(u(x))dx for s(0,1), where the non-local part [u] H s (Λ, d ) 2 denotes the total contribution from Λ d in the H s ( d ) Gagliardo semi-norm of u and W is a double well potential. We show that there exists, as Λ invades d , for almost all realizations of the random term a minimizer under compact perturbations, which is unique when d=2, s(1 2,1) and when d=1, s[1 4,1). This uniqueness is a consequence of the randomness. When the random term is absent, there are two minimizers which are invariant under translations in space, u=±1.

Publié le : 2015-01-01
DOI : https://doi.org/10.1016/j.anihpc.2014.02.002
Classification:  35R60,  80M35,  82D30,  74Q05
@article{AIHPC_2015__32_3_593_0,
     author = {Dirr, Nicolas and Orlandi, Enza},
     title = {Uniqueness of the minimizer for a random non-local functional with double-well potential in $ d\leq 2$
      },
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {32},
     year = {2015},
     pages = {593-622},
     doi = {10.1016/j.anihpc.2014.02.002},
     zbl = {1320.35355},
     mrnumber = {3353702},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_3_593_0}
}
Dirr, Nicolas; Orlandi, Enza. Uniqueness of the minimizer for a random non-local functional with double-well potential in $ d\leq 2$
      . Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 593-622. doi : 10.1016/j.anihpc.2014.02.002. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_3_593_0/

[1] M. Aizenman, J. Wehr, Rounding effects on quenched randomness on first-order phase transitions, Commun. Math. Phys. 130 (1990), 489 -528 | MR 1060388 | Zbl 0714.60090

[2] A. Bovier, Statistical Mechanics of Disordered Systems. A Mathematical Perspective, Cambridge University Press (2012) | MR 2252929 | Zbl 1246.82001

[3] D. Brockmann, I.M. Sokolov, Lévy flights in external force fields: from models to equations, Chem. Phys. 284 (2002), 409 -421

[4] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521 -573 | MR 2944369 | Zbl 1252.46023

[5] P.D. Ditlevsen, Anomalous jumping in a double-well potential, Phys. Rev. E 60 (1999), 172 -179

[6] N. Dirr, E. Orlandi, Sharp-interface limit of a Ginzburg–Landau functional with a random external field, SIAM J. Math. Anal. 41 (2009), 781 -824 | MR 2515785 | Zbl 1202.35313

[7] N. Dirr, E. Orlandi, Unique minimizer for a random functional with double well potential in dimension 1 and 2, Commun. Math. Sci. 1 (2011), 331 -351 | MR 2815675 | Zbl 1219.35380

[8] A. Garroni, S. Müller, A variational model for dislocation in the line tension limit, Arch. Ration. Mech. Anal. 81 (2006), 535 -578 | MR 2231783 | Zbl 1158.74365

[9] A. Garroni, G. Palatucci, A singular perturbation result with a fractional norm, Variational Problem in Material Sciences, Prog. Nonlinear Differ. Equ. Appl. vol. 68 (2006), 111 -126 | MR 2223366 | Zbl 1107.82019

[10] M.D.M. Gonzales, Gamma convergence of an energy functional related to the fractional Laplacian, Calc. Var. Partial Differ. Equ. 36 (2009), 173 -210 | MR 2546026

[11] P. Hall, C.C. Heyde, Martingale Limit Theory and Its Application, Academic Press, New York (1980) | MR 624435 | Zbl 0462.60045

[12] G. Keller, Equilibrium States in Ergodic Theory, London Math. Soc. Stud. Texts vol. 42 (1998) | MR 1618769 | Zbl 0896.28006

[13] R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamical approach, Phys. Rep. 339 (2000), 1 -77 | MR 1809268 | Zbl 0984.82032

[14] G. Palatucci, O. Savin, E. Valdinoci, Local and global minimizers for a variational energy involving fractional norm, Ann. Mat. Pura Appl. 92 (2013), 673 -718 | MR 3081641 | Zbl 1278.82022

[15] R. Cont, P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser. , Chapman & Hall, CRC, Boca Raton (2004) | MR 2042661 | Zbl 1052.91043

[16] O. Savin, E. Valdinoci, Γ-convergence for nonlocal phase transitions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 29 (2012), 479 -500 | Numdam | MR 2948285 | Zbl 1253.49008

[17] O. Savin, E. Valdinoci, Density estimates for a variational model driven by the Gagliardo norm, J. Math. Pures Appl. 9 (2014), 1 -26 | MR 3133422 | Zbl 1278.49016

[18] R. Servadei, E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 (2014), 133 -154 | MR 3161511 | Zbl 1292.35315

[19] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplacian operator, Commun. Pure Appl. Math. 60 (2007), 67 -112 | MR 2270163 | Zbl 1141.49035

[20] B.J. West, P. Grigolini, R. Metzler, T. Nonnenmacher, Fractional diffusion and Lévy stable processes, Phys. Rev. E 55 (1997), 99 -106 | MR 1429568