Stable regular critical points of the Mumford–Shah functional are local minimizers
Bonacini, M. ; Morini, M.
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015), p. 533-570 / Harvested from Numdam

In this paper it is shown that any regular critical point of the Mumford–Shah functional, with positive definite second variation, is an isolated local minimizer with respect to competitors which are sufficiently close in the L 1 -topology. A global minimality result in small tubular neighborhoods of the discontinuity set is also established.

Publié le : 2015-01-01
DOI : https://doi.org/10.1016/j.anihpc.2014.01.006
Classification:  49K10,  49Q20
@article{AIHPC_2015__32_3_533_0,
     author = {Bonacini, M. and Morini, M.},
     title = {Stable regular critical points of the Mumford--Shah functional are local minimizers},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {32},
     year = {2015},
     pages = {533-570},
     doi = {10.1016/j.anihpc.2014.01.006},
     mrnumber = {3353700},
     zbl = {1316.49026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_3_533_0}
}
Bonacini, M.; Morini, M. Stable regular critical points of the Mumford–Shah functional are local minimizers. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 533-570. doi : 10.1016/j.anihpc.2014.01.006. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_3_533_0/

[1] E. Acerbi, N. Fusco, M. Morini, Minimality via second variation for a nonlocal isoperimetric problem, Commun. Math. Phys. 322 (2013), 515 -557 | MR 3077924 | Zbl 1270.49043

[2] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York (2000) | MR 1857292 | Zbl 0957.49001

[3] J.-F. Babadjian, A. Giacomini, Existence of strong solutions for quasi-static evolution in brittle fracture, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) (2014), http://dx.doi.org/10.2422/2036-2145.201106_003 | Zbl 1311.49112

[4] M. Bonacini, Minimality and stability results for a class of free-discontinuity and nonlocal isoperimetric problems, https://digitallibrary.sissa.it/handle/1963/7191 | Zbl 1301.49114

[5] A. Braides, Approximation of Free-Discontinuity Problems, Lect. Notes Math. vol. 1694 , Springer-Verlag, Berlin (1998) | MR 1651773 | Zbl 0909.49001

[6] F. Cagnetti, M.G. Mora, M. Morini, A second order minimality condition for the Mumford–Shah functional, Calc. Var. Partial Differ. Equ. 33 (2008), 37 -74 | MR 2413101 | Zbl 1191.49018

[7] M. Carriero, A. Leaci, Existence theorem for a Dirichlet problem with free discontinuity set, Nonlinear Anal. 15 (1990), 661 -677 | MR 1073957 | Zbl 0713.49003

[8] M. Cicalese, G.P. Leonardi, A selection principle for the sharp quantitative isoperimetric inequality, Arch. Ration. Mech. Anal. 206 (2012), 617 -643 | MR 2980529 | Zbl 1257.49045

[9] G. Dal Maso, M.G. Mora, M. Morini, Local calibrations for minimizers of the Mumford–Shah functional with rectilinear discontinuity sets, J. Math. Pures Appl. 79 (2000), 141 -162 | MR 1749156 | Zbl 0962.49013

[10] G. David, Singular Sets of Minimizers for the Mumford–Shah Functional, Prog. Math. vol. 233 , Birkhäuser Verlag, Basel (2005) | MR 2129693 | Zbl 1086.49030

[11] E. De Giorgi, M. Carriero, A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Ration. Mech. Anal. 108 (1989), 195 -218 | MR 1012174 | Zbl 0682.49002

[12] N. Fusco, M. Morini, Equilibrium configurations of epitaxially strained elastic films: second order minimality conditions and qualitative properties of solutions, Arch. Ration. Mech. Anal. 203 (2012), 247 -327 | MR 2864412 | Zbl 1281.74024

[13] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monogr. Stud. Math. vol. 24 , Pitman (Advanced Publishing Program), Boston (1985) | MR 775683 | Zbl 0695.35060

[14] M. Grüter, Boundary regularity for solutions of a partitioning problem, Arch. Ration. Mech. Anal. 97 (1987), 261 -270 | MR 862549 | Zbl 0613.49029

[15] V. Julin, G. Pisante, Minimality via second variation for microphase separation of diblock copolymer melts, preprint, 2013.

[16] H. Koch, G. Leoni, M. Morini, On optimal regularity of free boundary problems and a conjecture of De Giorgi, Commun. Pure Appl. Math. 58 (2005), 1051 -1076 | MR 2143526 | Zbl 1082.35168

[17] R.V. Kohn, P. Sternberg, Local minimisers and singular perturbations, Proc. R. Soc. Edinb., Sect. A, Math. 111 (1989), 69 -84 | MR 985990 | Zbl 0676.49011

[18] F. Maddalena, S. Solimini, Blow-up techniques and regularity near the boundary for free discontinuity problems, Adv. Nonlinear Stud. 1 (2001), 1 -41 | MR 1868648 | Zbl 1044.49026

[19] M.G. Mora, M. Morini, Local calibrations for minimizers of the Mumford–Shah functional with a regular discontinuity set, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18 (2001), 403 -436 | Numdam | MR 1841127 | Zbl 1052.49018

[20] M. Morini, Free discontinuity problems: calibration and approximation of solutions, https://digitallibrary.sissa.it/handle/1963/5398

[21] M. Morini, Global calibrations for the non-homogeneous Mumford–Shah functional, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 1 (2002), 603 -648 | Numdam | MR 1990674 | Zbl 1170.49308

[22] D. Mumford, J. Shah, Boundary detection by minimizing functionals, I, Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco (1985)

[23] D. Mumford, J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math. 17 (1989), 577 -685 | MR 997568 | Zbl 0691.49036

[24] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis 3, Australian National University, Centre for Mathematical Analysis, Canberra (1983) | MR 756417 | Zbl 0546.49019

[25] P. Sternberg, K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math. 503 (1998), 63 -85 | MR 1650327 | Zbl 0967.53006