Anisotropic Einstein data with isotropic non negative prescribed scalar curvature
Fiedler, Bernold ; Hell, Juliette ; Smith, Brian
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015), p. 401-428 / Harvested from Numdam

Nous construisons des données initiales de trou noir à symétrie temporelle pour les équations d'Einstein dont la courbure scalaire est prescrite ; plus précisément une partie de telles données initiales contenue à l'intérieur du trou noir. Dans ce cas, les contraintes d'Einstein peuvent être exprimées à l'aide d'une équation parabolique dont la variable « temps » est le rayon, vérifiée par une composante u de la métrique qui subit une explosion en « temps » fini. La métrique elle-même est régulière jusqu'à la surface au rayon de l'explosion (inclue) ; cette surface est une surface minimale.Nous montrons l'existence de données vérifiant les contraintes d'Einstein, dont le profil d'explosion est anisotrope (i.e. elles ne sont pas O(3)-symétriques) alors que la courbure scalaire a été prescrite de façon isotrope.Nos résultats sont basés sur la théorie des variétés centrales pour les équations paraboliques quasi-linéaires et sur la théorie équivariante des bifurcations pour des solutions de l'équation en variables auto-similaires, dont l'évolution n'est pas nécessairement auto-similaire.

We construct time-symmetric black hole initial data for the Einstein equations with prescribed scalar curvature, or more precisely a piece of such initial data contained inside the black hole. In this case, the Einstein constraint equations translate into a parabolic equation, with radius as ‘time’ variable, for a metric component u that undergoes blow up. The metric itself is regular up to and including the surface at the blow up radius, which is a minimal surface.We show the existence of Einstein constrained data with blow up profiles that are anisotropic (i.e. not O(3) symmetric) although the scalar curvature was isotropically prescribed.Our results are based on center manifold theory for quasilinear parabolic equations and on equivariant bifurcation theory for not necessarily self-similar solutions of a self-similarly rescaled equation.

@article{AIHPC_2015__32_2_401_0,
     author = {Fiedler, Bernold and Hell, Juliette and Smith, Brian},
     title = {Anisotropic Einstein data with isotropic non negative prescribed scalar curvature},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {32},
     year = {2015},
     pages = {401-428},
     doi = {10.1016/j.anihpc.2014.01.002},
     zbl = {1332.35358},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_2_401_0}
}
Fiedler, Bernold; Hell, Juliette; Smith, Brian. Anisotropic Einstein data with isotropic non negative prescribed scalar curvature. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 401-428. doi : 10.1016/j.anihpc.2014.01.002. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_2_401_0/

[1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (1970) | Zbl 0515.33001

[2] R. Bartnik, Existence of maximal surfaces in asymptotically flat spacetimes, Commun. Math. Phys. 94 (1984), 155 -175 | Zbl 0548.53054

[3] R. Bartnik, Quasi-spherical metrics and prescribed scalar curvature, J. Differ. Geom. 37 (1993), 31 -71 | Zbl 0786.53019

[4] R. Bartnik, J. Isenberg, The constraint equations, P.T. Chruściel, H. Friedrich (ed.), The Einstein Equations and the Large Scale Behavior of Gravitational Fields: 50 Years of the Cauchy Problem in General Relativity, Birkhäuser, Basel, Switzerland (2004), 1 -34

[5] P. Brunovskỳ, B. Fiedler, Connecting orbits in scalar reaction diffusion equations. II: The complete solution, J. Differ. Equ. 81 (1989), 106 -135 | Zbl 0699.35144

[6] M. Cantor, The existence of non-trivial asymptotically flat initial data for vacuum spacetimes, Commun. Math. Phys. 57 (1977), 83 -86 | Zbl 0404.53025

[7] M. Cantor, D. Brill, The Laplacian on asymptotically flat manifolds and the specification of scalar curvature, J. Differ. Geom. 43 (1981), 317 -330 | Numdam | Zbl 0471.53031

[8] M. Cantor, A. Fischer, J. Marsden, N. Ō Murchadha, The existence of maximal slicings in asymptotically flat spacetimes, Commun. Math. Phys. 49 (1976), 187 -190 | Zbl 0336.53015

[9] J. Carr, Applications of Center Manifold Theory, Appl. Math. Sci. vol. 35 , Springer (1981)

[10] I. Chavel, Riemannian Geometry – A Modern Introduction, Cambridge University Press (2006) | Zbl 1099.53001

[11] P. Chossat, R. Lauterbach, The instability of axisymmetric solutions in problems with spherical symmetry, SIAM J. Math. Anal. 1 (1989), 31 -38 | Zbl 0708.22012

[12] P. Chossat, R. Lauterbach, Methods in Equivariant Bifurcation and Dynamical Systems, Adv. Ser. Nonlinear Dyn. vol. 15 , World Scientific (2000) | Zbl 0968.37001

[13] P. Chossat, R. Lauterbach, I. Melbourne, Steady-state bifurcation with O(3)-symmetry, Arch. Ration. Mech. Anal. 113 (1991), 313 -376 | Zbl 0722.58031

[14] G. Cicogna, Symmetry breakdown from bifurcation, Lett. Nuovo Cimento 31 (1981), 600 -602

[15] M.G. Crandall, P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321 -340 | Zbl 0219.46015

[16] B. Fiedler, Global Bifurcation of Periodic Solutions with Symmetry, Lect. Notes Math. vol. 1309 , Springer (1988) | Zbl 0644.34038

[17] B. Fiedler, K. Mischaikow, Dynamics of bifurcations for variational problems with O(3)-equivariance: A Conley index approach, Arch. Ration. Mech. Anal. 119 (1992), 145 -196 | Zbl 0756.49003

[18] M. Golubitsky, D.G. Schaeffer, I. Stewart, Singularities and Groups in Bifurcation Theory, vol. II, Appl. Math. Sci. vol. 69 , Springer (1988)

[19] M. Haragus, G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-dimensional Dynamical Systems, Universitext , Springer (2010)

[20] J. Hell, Conley index at infinity, Topol. Methods Nonlinear Anal. 42 (2013), 137 -168 | Zbl 1317.37021

[21] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math. vol. 840 , Springer (1981) | Zbl 0456.35001

[22] E. Ihrig, M. Golubitsky, Pattern selection with O(3) symmetry, Physica D 13 (1984), 1 -33 | Zbl 0581.22021

[23] H. Koch, On center manifolds, Nonlinear Anal. 28 (1997), 1227 -1248 | Zbl 0874.34047

[24] R. Lauterbach, Bifurcation with O(3)-symmetry, University of Augsburg (1988)

[25] R. Lauterbach, Dynamics near steady state bifurcations in problems with spherical symmetry, M. Roberts, I. Stewart (ed.), Singularity Theory and Its Applications, Warwick, 1989, Part II, Lect. Notes Math. vol. 1463 , Springer (1991), 256 -265

[26] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser (1995) | Zbl 0816.35001

[27] A. Lunardi, Interpolation Theory, Scuola Normale Superiore, Pisa (2009) | Zbl 1171.41001

[28] G. Da Prato, A. Lunardi, Stability, instability and center manifold for fully nonlinear autonomous parabolic equations in Banach space, Arch. Ration. Mech. Anal. 58 (1988), 115 -141 | Zbl 0661.35044

[29] A. Mielke, Locally invariant manifolds for quasilinear parabolic equations, Rocky Mt. J. Math. 21 (1991), 707 -714 | Zbl 0747.35016

[30] H. Ringström, The Cauchy Problem in General Relativity, European Mathematical Society (2009) | Zbl 1169.83003

[31] D.H. Sattinger, Group Theoretic Methods in Bifurcation Theory, Lect. Notes Math. vol. 762 , Springer (1979) | Zbl 0414.58013

[32] Y. Shi, L. Tam, Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature, J. Differ. Geom. 62 (2002), 79 -125 | Zbl 1071.53018

[33] L. Simon, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Ann. Math. 118 (1983), 525 -571 | Zbl 0549.35071

[34] G. Simonett, Center manifolds for quasilinear reaction–diffusion systems, Differ. Integral Equ. 8 (1995), 753 -796 | Zbl 0815.35054

[35] B. Smith, Blow-up in the parabolic scalar curvature equation, arXiv:0705.3774 (2012)

[36] B. Smith, Black hole initial data with a horizon of prescribed geometry, Gen. Relativ. Gravit. 41 (2009), 1013 -1024 | Zbl 1177.83094

[37] B. Smith, Black hole initial data with a horizon of prescribed intrinsic and extrinsic geometry, Complex Analysis and Dynamical Systems IV. Part 2. General Relativity, Geometry, and PDE. Proceedings of the 4th Conference on Complex Analysis and Dynamical Systems, Nahariya, Israel, 2009, American Mathematical Society (2011) | Zbl 1238.53028

[38] B. Smith, G. Weinstein, On the connectedness of the space of initial data for the Einstein equations, Electron. Res. Announc. Am. Math. Soc. 6 (2000), 52 -63 | Zbl 0969.83006

[39] B. Smith, G. Weinstein, Quasi-convex foliations and asymptotically flat metrics of non-negative scalar curvature, Commun. Anal. Geom. 12 (2004), 511 -551 | Zbl 1073.53039

[40] A. Vanderbauwhede, G. Iooss, Center Manifolds in Infinite Dimensions, Dyn. Rep. Expo. Dyn. Syst. New Ser. vol. 1 , Springer (1992), 125 -163 | Zbl 0751.58025

[41] A. Vanderbauwhede, Local Bifurcation and Symmetry, Res. Notes Math. vol. 75 , Pitman, London (1982) | Zbl 0539.58022

[42] A. Vanderbauwhede, Centre Manifolds, Normal Forms and Elementary Bifurcations, Dyn. Rep. vol. 2 , Springer (1989), 89 -169 | Zbl 0677.58001