Critical points of the Trudinger–Moser trace functional with high energy levels
Deng, Shengbing ; Musso, Monica
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015), p. 59-95 / Harvested from Numdam

Let Ω be a bounded domain in 2 with smooth boundary. In this paper we are concerned with the existence of critical points for the supercritical Trudinger–Moser trace functional Ωe kπ(1+μ)u 2 (0.1) in the set {uH 1 (Ω): Ω (|u| 2 +u 2 )dx=1}, where k1 is an integer and μ>0 is a small parameter. For any integer k1 and for any μ>0 sufficiently small, we prove the existence of a pair of k-peaks constrained critical points of the above problem.

@article{AIHPC_2015__32_1_59_0,
     author = {Deng, Shengbing and Musso, Monica},
     title = {Critical points of the Trudinger--Moser trace functional with high energy levels},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {32},
     year = {2015},
     pages = {59-95},
     doi = {10.1016/j.anihpc.2013.10.002},
     mrnumber = {3303942},
     zbl = {1336.35134},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_1_59_0}
}
Deng, Shengbing; Musso, Monica. Critical points of the Trudinger–Moser trace functional with high energy levels. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 59-95. doi : 10.1016/j.anihpc.2013.10.002. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_1_59_0/

[1] D. Adams, Traces of potentials. II, Indiana Univ. Math. J. 22 (1973), 907 -918 | MR 313783 | Zbl 0265.46039

[2] Adimurthi, S.L. Yadava, Critical exponent problem in 2 with Neumann boundary condition, Commun. Partial Differ. Equ. 15 no. 4 (1990), 461 -501 | MR 1046704 | Zbl 0707.35059

[3] Adimurthi, K. Tintarev, On compactness in the Trudinger–Moser inequality, Ann. Sc. Norm. Super. Pisa (2013), http://dx.doi.org/10.2422/2036-2145.201111_003, http://arxiv.org/abs/1110.3647 | MR 3235520 | Zbl 1301.46011

[4] Adimurthi, K. Tintarev, On a version of Trudinger–Moser inequality with Möbius shift invariance, Calc. Var. Partial Differ. Equ. 39 (2010), 203 -212 | MR 2659685 | Zbl 1198.35071

[5] L. Carleson, S.-Y.A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. (2) 110 (1986), 113 -127 | MR 878016 | Zbl 0619.58013

[6] P. Cherrier, Problèmes de Neumann non linéaires sur les variétés riemanniennes, C. R. Acad. Sci. Paris Sér. I Math. 292 no. 13 (1981), 637 -640 | MR 625363 | Zbl 0471.58024

[7] P. Cherrier, Pascal Meilleures constantes dans des inégalités relatives aux espaces de Sobolev, Bull. Sci. Math. (2) 108 no. 3 (1984), 225 -262 | MR 771911 | Zbl 0547.58017

[8] A. Cianchi, Moser–Trudinger trace inequalities, Adv. Math. 217 (2008), 2005 -2044 | MR 2388084 | Zbl 1138.46020

[9] J. Dávila, M. Del Pino, M. Musso, Concentrating solutions in a two-dimensional elliptic problem with exponential Neumann data, J. Funct. Anal. 227 no. 2 (2005), 430 -490 | MR 2168081 | Zbl 1207.35158

[10] D.G. De Figueiredo, J.M. Do Ó, B. Ruf, On an inequality by N. Trudinger and J. Moser and related elliptic equations, Commun. Pure Appl. Math. 55 (2002), 135 -152 | MR 1865413 | Zbl 1040.35029

[11] M. Del Pino, M. Musso, B. Ruf, New solutions for Trudinger–Moser critical equations in 2 , J. Funct. Anal. 258 (2010), 421 -457 | MR 2557943 | Zbl 1191.35138

[12] M. Del Pino, M. Musso, B. Ruf, Beyond the Trudinger–Moser supremum, Calc. Var. Partial Differ. Equ. 44 (2012), 543 -576 | MR 2915332 | Zbl 1246.46037

[13] S.-B. Deng, M. Musso, New solutions for critical Neumann problems 2 , preprint.

[14] M. Flucher, Extremal functions for the Trudinger–Moser inequality in 2 dimensions, Comment. Math. Helv. 67 (1992), 471 -497 | MR 1171306 | Zbl 0763.58008

[15] T. Lamm, F. Robert, M. Struwe, The heat flow with a critical exponential nonlinearity, J. Funct. Anal. 257 no. 9 (2009), 2951 -2998 | MR 2559723 | Zbl 05618762

[16] Y.-X. Li, Moser–Trudinger inequality on compact Riemannian manifolds of dimension two, J. Partial Differ. Equ. 14 no. 2 (2001), 163 -192 | MR 1838044 | Zbl 0995.58021

[17] Y.-X. Li, Extremal functions for the Moser–Trudinger inequalities on compact Riemannian manifolds, Sci. China Ser. A 48 no. 5 (2005), 618 -648 | MR 2158479 | Zbl 1100.53036

[18] Y.-X. Li, P. Liu, A Moser–Trudinger inequality on the boundary of a compact Riemann surface, Math. Z. 250 no. 2 (2005), 363 -386 | MR 2178789 | Zbl 1070.26017

[19] Y. Li, M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J. 80 (1995), 383 -417 | MR 1369398 | Zbl 0846.35050

[20] K.C. Lin, Extremal functions for Moser's inequality, Trans. Am. Math. Soc. 348 no. 7 (1996), 2663 -2671 | MR 1333394 | Zbl 0861.49001

[21] P.L. Lions, The concentration–compactness principle in the calculus of variations. The limit case, part 1, Rev. Mat. Iberoam. 1 (1985), 145 -201 | MR 834360 | Zbl 0704.49005

[22] V. Maz'Ya, Sobolev Spaces, Springer Ser. Sov. Math. , Springer-Verlag, Berlin (1985) | MR 817985 | Zbl 0727.46017

[23] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970–1971), 1077 -1092 | MR 301504

[24] B. Ou, A uniqueness theorem for harmonic functions on the upper-half plane, Conform. Geom. Dyn. 4 (2000), 120 -125 | MR 1799653 | Zbl 0970.31001

[25] S.I. Pohozaev, On the Sobolev imbedding theorem for pl=n , Doklady Conference, Section Math. Moscow Power Inst. (1965), 158 -170

[26] M. Struwe, Critical points of embeddings of H 0 1,n into Orlicz spaces, Ann. Inst. Henri Poincaré 5 no. 5 (1988), 425 -464 | Numdam | MR 970849 | Zbl 0664.35022

[27] N.S. Trudinger, On embedding into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473 -483 | MR 216286 | Zbl 0163.36402

[28] Y.-Y. Yang, Moser–Trudinger trace inequalities on a compact Riemannian surface with boundary, Pac. J. Math. 227 no. 1 (2006), 177 -200 | MR 2247878 | Zbl 1130.58011

[29] V.I. Yudovic, Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR 138 (1961), 805 -808 | MR 140822

[30] L. Zhang, Classification of conformal metrics on + 2 with constant Gauss curvature and geodesic curvature on the boundary under various integral finiteness assumptions, Calc. Var. Partial Differ. Equ. 16 (2003), 405 -430 | MR 1971036 | Zbl 1290.35112