Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics
Friedlander, Susan ; Vicol, Vlad
Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011), p. 283-301 / Harvested from Numdam

Nous utilisons des techniques de De Giorgi pour démontrer la continuité Hölder de solutions faibles pour une classe dʼéquations de dérive-diffusion, avec données initiales L 2 et champ de vitesse incompressible appartenant à L t 𝐵𝑀𝑂 x -1 . Nous appliquons ce résultat pour démontrer la régularité globale pour une famille dʼéquations du scalaire actif qui comprend lʼéquation dʼadvection–diffusion qui a été proposée par Moffatt dans le contexte de la turbulence magnétostrophique dans le noyau fluide de la Terre.

We use De Giorgi techniques to prove Hölder continuity of weak solutions to a class of drift-diffusion equations, with L 2 initial data and divergence free drift velocity that lies in L t 𝐵𝑀𝑂 x -1 . We apply this result to prove global regularity for a family of active scalar equations which includes the advection–diffusion equation that has been proposed by Moffatt in the context of magnetostrophic turbulence in the Earthʼs fluid core.

Publié le : 2011-01-01
DOI : https://doi.org/10.1016/j.anihpc.2011.01.002
Classification:  76D03,  35Q35,  76W05
@article{AIHPC_2011__28_2_283_0,
     author = {Friedlander, Susan and Vicol, Vlad},
     title = {Global well-posedness for an advection--diffusion equation arising in magneto-geostrophic dynamics},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {28},
     year = {2011},
     pages = {283-301},
     doi = {10.1016/j.anihpc.2011.01.002},
     mrnumber = {2784072},
     zbl = {1277.35291},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_2_283_0}
}
Friedlander, Susan; Vicol, Vlad. Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 283-301. doi : 10.1016/j.anihpc.2011.01.002. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_2_283_0/

[1] D.G. Aronson, J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal. 25 (1967), 81-122 | MR 244638 | Zbl 0154.12001

[2] L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Annals of Mathematics 171 no. 3 (2010), 1903-1930 | MR 2680400 | Zbl 1204.35063

[3] L. Caffarelli, A. Vasseur, The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics, Discrete Contin. Dyn. Syst. Ser. S 3 no. 3 (2010), 409-427 | MR 2660718 | Zbl 1210.76039

[4] M. Cannone, F. Planchon, More Lyapunov functions for the Navier–Stokes equations, R. Salvi (ed.), Navier–Stokes Equations: Theory and Numerical Methods, Lecture Notes in Pure and Applied Mathematics vol. 223, Dekker, New York (2001), 19-26 | MR 1864494

[5] J.-Y. Chemin, N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes, J. Differential Equations 121 no. 2 (1995), 314-328 | MR 1354312 | Zbl 0878.35089

[6] A. Córdoba, D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys. 249 no. 3 (2004), 511-528 | MR 2084005 | Zbl 1309.76026

[7] D. Córdoba, C. Fefferman, Growth of solutions for QG and 2D Euler equations, J. Amer. Math. Soc. 15 no. 3 (2002), 665-670 | MR 1896236 | Zbl 1013.76011

[8] P. Constantin, G. Iyer, J. Wu, Global regularity for a modified critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J. 57 no. 6 (2008), 2681-2692 | MR 2482996 | Zbl 1159.35059

[9] P. Constantin, A.J. Majda, E. Tabak, Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar, Nonlinearity 7 no. 6 (1994), 1495-1533 | MR 1304437 | Zbl 0809.35057

[10] P. Constantin, J. Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 no. 6 (2008), 1103-1110 | Numdam | MR 2466323 | Zbl 1149.76052

[11] P. Constantin, J. Wu, Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 no. 1 (2009), 159-180 | Numdam | MR 2483817 | Zbl 1163.76010

[12] E. De Giorgi, Sulla differenziabilità e lʼanaliticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat Nat. 3 (1957), 25-43 | MR 93649 | Zbl 0084.31901

[13] S. Friedlander, V. Vicol, Higher regularity of Hölder continuous solutions of parabolic equations with singular drift velocities, arXiv:1102.0585v1 [math.AP] | MR 2925107 | Zbl 1294.35096

[14] M. Giaquinta, Introduction to Regularity Theory for Nonlinear Elliptic Systems, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (1993) | MR 1239172 | Zbl 0786.35001

[15] G.A. Glatzmaier, D.E. Ogden, T.L. Clune, Modeling the Earthâs Dynamo, R.S.J. Sparks, C.J. Hawkesworth (ed.), State of the Planet: Frontiers and Challenges in Geophysics, Geophysical Monograph vol. 150 (2004), 13-24

[16] A. Kiselev, F. Nazarov, A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 no. 3 (2007), 445-453 | MR 2276260 | Zbl 1121.35115

[17] H. Koch, D. Tataru, Well Posedness for the Navier–Stokes equations, Adv. Math. 157 (2001), 22-35 | MR 1808843 | Zbl 0972.35084

[18] O.A. Ladyženskaja, V.A. Solonnikov, N.N. UralʼCeva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs vol. 23, American Mathematical Society, Providence, RI (1967) | MR 241822

[19] G.M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., River Edge, NJ (1996) | MR 1465184 | Zbl 0884.35001

[20] J.-L. Lions, Quelque Méthodes de Résolutions des Problémes aux Limites Non-Linéares, Dunod, Paris (1969) | MR 259693 | Zbl 0189.40603

[21] W. Mclean, Local and global descriptions of periodic pseudodifferential operators, Math. Nachr. 150 (1991), 151-161 | MR 1109651 | Zbl 0729.35149

[22] H.K. Moffatt, Magnetostrophic turbulence and the geodynamo, IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, IUTAM Bookser. vol. 4, Springer, Dordrecht (2008), 339-346 | MR 2432632 | Zbl 1208.76148

[23] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134 | MR 159139 | Zbl 0149.06902

[24] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931-954 | MR 100158 | Zbl 0096.06902

[25] H. Osada, Diffusion processes with generators of generalized divergence form, J. Math. Kyoto Univ. 27 no. 4 (1987), 597-619 | MR 916761 | Zbl 0657.35073

[26] M. Ruzhansky, V. Turunen, On the toroidal quantization of periodic pseudo-differential operators, Numer. Funct. Anal. Optim. 30 no. 9–10 (2009), 1098-1124 | MR 2589766 | Zbl 1193.35262

[27] Y.A. Semenov, Regularity theorems for parabolic equations, J. Funct. Anal. 231 no. 2 (2006), 375-417 | MR 2195337 | Zbl 1090.35059

[28] G. Seregin, L. Silvestre, V. Šverák, A. Zlatoš, On divergence-free drifts, arXiv:1010.6025v1 [math.AP] | MR 2852216 | Zbl 1232.35027

[29] L. Silvestre, Eventual regularization for the slightly supercritical quasi-geostrophic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 no. 2 (2010), 693-704 | Numdam | MR 2595196 | Zbl 1187.35186

[30] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series vol. 43, Princeton University Press, Princeton, NJ (1993) | MR 1232192 | Zbl 0821.42001

[31] R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI (2001) | MR 1846644 | Zbl 0981.35001

[32] A. Vasseur, A new proof of partial regularity of solutions to Navier–Stokes equations, NoDEA Nonlinear Differential Equations Appl. 14 no. 5–6 (2007), 753-785 | MR 2374209 | Zbl 1142.35066

[33] J. Wu, Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, SIAM J. Math. Anal. 36 no. 3 (2004), 1014-1030 | MR 2111923 | Zbl 1083.76064

[34] Q.S. Zhang, A strong regularity result for parabolic equations, Comm. Math. Phys. 244 (2004), 245-260 | MR 2031029 | Zbl 1061.35026

[35] Q.S. Zhang, Local estimates on two linear parabolic equations with singular coefficients, Pacific Journal of Math. 223 no. 2 (2006), 367-396 | MR 2221033 | Zbl 1113.35041