@article{AIHPC_2005__22_3_343_0, author = {Rifford, Ludovic}, title = {Stratified semiconcave control-Lyapunov functions and the stabilization problem}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {22}, year = {2005}, pages = {343-384}, doi = {10.1016/j.anihpc.2004.07.008}, mrnumber = {2136728}, zbl = {02192476}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2005__22_3_343_0} }
Rifford, Ludovic. Stratified semiconcave control-Lyapunov functions and the stabilization problem. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) pp. 343-384. doi : 10.1016/j.anihpc.2004.07.008. http://gdmltest.u-ga.fr/item/AIHPC_2005__22_3_343_0/
[1] Structural properties of singularities of semiconcave functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (4) (1999) 719-740. | Numdam | MR 1760538 | Zbl 0957.26002
, ,[2] On the singularities of convex functions, Manuscripta Math. 76 (3-4) (1992) 421-435. | MR 1185029 | Zbl 0784.49011
, , ,[3] Patchy vector fields and asymptotic stabilization, ESAIM Control Optim. Calc. Var. 4 (1999) 445-471. | Numdam | MR 1693900 | Zbl 0924.34058
, ,[4] Discontinuous control of nonholonomic systems, Systems Control Lett. 27 (1) (1996) 37-45. | MR 1375910 | Zbl 0877.93107
,[5] Viability Theory, Birkhäuser Boston, Boston MA, 1991. | MR 1134779 | Zbl 0755.93003
,[6] Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser Boston, Boston, MA, 1997. | MR 1484411 | Zbl 0890.49011
, ,[7] Asymptotic stability and feedback stabilization, in: , , (Eds.), Differential Geometric Control Theory, Birkhäuser, Boston, 1983, pp. 181-191. | MR 708502 | Zbl 0528.93051
,[8] Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, vol. 58, Birkhäuser Boston, Boston, MA, 2004. | MR 2041617 | Zbl 1095.49003
, ,[9] Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983. | MR 709590 | Zbl 0582.49001
,[10] Asymptotic controllability implies feedback stabilization, IEEE Trans. Automat. Control 42 (1997) 1394-1407. | MR 1472857 | Zbl 0892.93053
, , , ,[11] Nonsmooth Analysis and Control Theory, Graduate Texts in Math., vol. 178, Springer-Verlag, New York, 1998. | MR 1488695 | Zbl 1047.49500
, , , ,[12] Proximal smoothness and the lower- property, J. Convex Anal. 2 (1995) 117-145. | MR 1363364 | Zbl 0881.49008
, , ,[13] On the stabilization of some nonlinear control systems: results, tools, and applications, in: Nonlinear Analysis, Differential Equations and Control (Montreal, QC, 1998), Kluwer Academic, Dordrecht, 1999, pp. 307-367. | MR 1695009 | Zbl 0984.93067
,[14] Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1) (1983) 1-42. | MR 690039 | Zbl 0599.35024
, ,[15] The Theory of Matrices. Vol. 1, AMS Chelsea Publishing, Providence, RI, 1998. | MR 1657129 | Zbl 0927.15001
,[16] Stratified Morse Theory, Springer-Verlag, Berlin, 1988. | MR 932724 | Zbl 0639.14012
, ,[17] Generalized Solutions of Hamilton-Jacobi Equations, Pitman, Boston, MA, 1982, (Advanced Publishing Program). | MR 667669 | Zbl 0497.35001
,[18] Continuous selections. I, Ann. of Math. (2) 63 (1956) 361-382. | MR 77107 | Zbl 0071.15902
,[19] A dual to Lyapunov stability theorem, Systems Control Lett. 42 (3) (2000) 161-168. | MR 2007046 | Zbl 0974.93058
,[20] A. Rantzer, A converse Lyapunov stability theorem, Personnal communication.
[21] L. Rifford, Problèmes de stabilisation en théorie du controle, PhD thesis, Université Claude Bernard Lyon I, 2000.
[22] Stabilisation des systèmes globalement asymptotiquement commandables, C. R. Acad. Sci. Paris Sér. I Math. 330 (3) (2000) 211-216. | MR 1748310 | Zbl 0952.93113
,[23] Existence of Lipschitz and semiconcave control-Lyapunov functions, SIAM J. Control Optim. 39 (4) (2000) 1043-1064. | MR 1814266 | Zbl 0982.93068
,[24] Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM J. Control Optim. 41 (3) (2002) 659-681. | MR 1939865 | Zbl 1034.93053
,[25] Singularities of viscosity solutions and the stabilization problem in the plane, Indiana Univ. Math. J. 52 (5) (2003) 1373-1396. | MR 2010731 | Zbl 02247565
,[26] A Morse-Sard theorem for the distance function on Riemannian manifolds, Manuscripta Math. 113 (2004) 251-265. | MR 2128549 | Zbl 1051.53050
,[27] L. Rifford, On the existence of local smooth repulsive stabilizing feedbacks in dimension three, in preparation. | Zbl 05045577
[28] L. Rifford, The stabilization problem on surfaces, Rend. Semin. Mat. Torino, submitted for publication.
[29] Convex Analysis, Princeton University Press, Princeton, NJ, 1997, Reprint of the 1970 original, Princeton Paperbacks. | MR 1451876 | Zbl 0193.18401
,[30] A Lyapunov-like characterization of asymptotic controllability, SIAM J. Control Optim. 21 (1983) 462-471. | MR 696908 | Zbl 0513.93047
,[31] Stability and stabilization: discontinuities and the effect of disturbances, in: Nonlinear Analysis, Differential Equations and Control (Montreal, QC, 1998), Kluwer Academic, Dordrecht, 1999, pp. 307-367. | MR 1695014 | Zbl 0937.93034
,[32] Clocks and insensitivity to small measurement errors, ESAIM Control Optim. Calc. Var. 4 (1999) 537-557. | Numdam | MR 1746166 | Zbl 0984.93068
,[33] Subanalytic sets and feedback control, J. Differential Equations 31 (1) (1979) 31-52. | MR 524816 | Zbl 0407.93010
,