Exchangeable random measures
Austin, Tim
Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015), p. 842-861 / Harvested from Numdam

Soit A un espace de Borel standard, et soit A (k) l’ensemble des tableaux à valeurs dans A indexés par les sous-ensembles de de taille k. On s’intéresse aux mesures aléatoires sur un tel espace dont la loi est invariante par l’action naturelle des permutations de . Le résultat principal est une représentation de ces mesures aléatoires « échangeables », obtenue à partir des théorèmes de représentation classiques de de Finetti, Hoover, Aldous et Kallenberg pour des tableaux échangeables. Après avoir prouvé cette représentation, on en donne deux applications. La première est une nouvelle courte preuve du théorème de représentation de Dovbysh–Sudakov pour des matrices définies semi-positives échangeables. La seconde concerne la formulation d’une classe naturelle d’objets limites pour des modèles de champ moyen dilués pour des verres de spins qui capture plus d’information que la seule matrice limite de Gram–de Finetti qui est notamment utilisée dans l’étude du modèle de Sherrington–Kirkpatrick.

Let A be a standard Borel space, and consider the space A (k) of A-valued arrays indexed by all size-k subsets of . This paper concerns random measures on such a space whose laws are invariant under the natural action of permutations of . The main result is a representation theorem for such “exchangeable” random measures, obtained using the classical representation theorems for exchangeable arrays due to de Finetti, Hoover, Aldous and Kallenberg. After proving this representation, two applications of exchangeable random measures are given. The first is a short new proof of the Dovbysh–Sudakov Representation Theorem for exchangeable positive semi-definite matrices. The second is in the formulation of a natural class of limit objects for dilute mean-field spin glass models, retaining more information than just the limiting Gram–de Finetti matrix used in the study of the Sherrington–Kirkpatrick model.

Publié le : 2015-01-01
DOI : https://doi.org/10.1214/13-AIHP584
@article{AIHPB_2015__51_3_842_0,
     author = {Austin, Tim},
     title = {Exchangeable random measures},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {51},
     year = {2015},
     pages = {842-861},
     doi = {10.1214/13-AIHP584},
     mrnumber = {3365963},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_3_842_0}
}
Austin, Tim. Exchangeable random measures. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 842-861. doi : 10.1214/13-AIHP584. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_3_842_0/

[1] D. J. Aldous. Representations for partially exchangeable arrays of random variables. J. Multivariate Anal. 11 (4) (1981) 581–598. | MR 637937 | Zbl 0474.60044

[2] D. J. Aldous. On exchangeability and conditional independence. In Exchangeability in Probability and Statistics (Rome, 1981) 165–170. North-Holland, Amsterdam, 1982. | MR 675972 | Zbl 0493.60021

[3] D. J. Aldous. Exchangeability and related topics. In École d’Été de Probabilités de Saint-Flour XIII—1983 1–198. Lecture Notes in Math. 1117. Springer, Berlin, 1985. | MR 883646 | Zbl 0562.60042

[4] L.-P. Arguin. A remark on the infinite-volume Gibbs measures of spin glasses. J. Math. Phys. 49 (12) (2008) 125204, 8. | MR 2484335 | Zbl 1159.81300

[5] L.-P. Arguin and M. Aizenman. On the structure of quasi-stationary competing particle systems. Ann. Probab. 37 (3) (2009) 1080–1113. | MR 2537550 | Zbl 1177.60050

[6] I. Benjamini and Y. Peres. Markov chains indexed by trees. Ann. Probab. 22 (1) (1994) 219–243. | MR 1258875 | Zbl 0793.60080

[7] L. De Sanctis. Random multi-overlap structures and cavity fields in diluted spin glasses. J. Stat. Phys. 117 (2004) 785–799. | MR 2107895 | Zbl 1113.82029

[8] L. De Sanctis and S. Franz. Self-averaging identities for random spin systems. In Spin Glasses: Statics and Dynamics 123–142. Progr. Probab. 62. Birkhäuser, Basel, 2009. | MR 2761987 | Zbl 1194.82041

[9] L. N. Dovbysh and V. N. Sudakov. Gram–de Finetti matrices. In Problems of the Theory of Probability Distribution VII 77–86, 238, 244–245. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 119. Nauka, Leningrad, 1982. | MR 666087 | Zbl 0496.60018

[10] M. Fannes, H. Spohn and A. Verbeure. Equilibrium states for mean field models. J. Math. Phys. 21 (2) (1980) 355–358. | MR 558480 | Zbl 0445.46049

[11] E. Glasner. Ergodic Theory via Joinings. Amer. Math. Soc., Providence, RI, 2003. | MR 1958753 | Zbl 1038.37002

[12] K. Hestir. The Aldous representation theorem and weakly exchangeable non-negative definite arrays. Ph.D. dissertation, Statistic Dept., Univ. California, Berkeley, 1986. | MR 2635653

[13] D. N. Hoover. Relations on probability spaces and arrays of random variables. Unpublished manuscript, 1979.

[14] D. N. Hoover. Row–columns exchangeability and a generalized model for exchangeability. In Exchangeability in Probability and Statistics (Rome, 1981) 281–291. North-Holland, Amsterdam, 1982. | MR 675982 | Zbl 0495.60040

[15] O. Kallenberg. On the representation theorem for exchangeable arrays. J. Multivariate Anal. 30 (1) (1989) 137–154. | MR 1003713 | Zbl 0676.60046

[16] O. Kallenberg. Symmetries on random arrays and set-indexed processes. J. Theoret. Probab. 5 (4) (1992) 727–765. | MR 1182678 | Zbl 0759.60035

[17] O. Kallenberg. Foundations of Modern Probability, 2nd edition. Probability and Its Applications (New York). Springer, New York, 2002. | MR 1876169 | Zbl 0892.60001

[18] O. Kallenberg. Probabilistic Symmetries and Invariance Principles. Probability and Its Applications (New York). Springer, New York, 2005. | MR 2161313 | Zbl 1084.60003

[19] M. Mézard, G. Parisi and M. A. Virasoro. Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics 9. World Scientific Publishing, Teaneck, NJ, 1987. | MR 1026102 | Zbl 0992.82500

[20] D. Panchenko. Spin glass models from the point of view of spin distributions. Ann. Probab. 41 (2013) 1315–1361. | MR 3098679 | Zbl 1281.60081

[21] D. Panchenko. On the Dovbysh–Sudakov representation result. Electron. Comm. Probab. 15 (2010) 330–338. | MR 2679002 | Zbl 1226.60050

[22] D. Panchenko. The Sherrington–Kirkpatrick Model. Springer Monographs in Mathematics. Springer, Berlin, 2013. | MR 3052333 | Zbl 1266.82005

[23] D. Panchenko and M. Talagrand. Bounds for diluted mean-fields spin glass models. Probab. Theory Related Fields 130 (3) (2004) 319–336. | MR 2095932 | Zbl 1101.82041

[24] M. Talagrand. Spin Glasses: A Challenge for Mathematicians. Cavity and Mean Field Models. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3 Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 46. Springer, Berlin, 2003. | MR 1993891 | Zbl 1033.82002

[25] L. Viana and A. Bray. Phase diagrams for dilute spin glasses. J. Phys. C: Solid State Phys. 18 (15) (1985) 3037–3052.