La loi de Tracy-Widom est la limite de la plus grande valeur propre des ensembles de matrices aléatoires lorsque leur taille tend vers l’infini. Nous utilisons la représentation par l’opérateur stochastique d’Airy pour montrer que lorsque la queue de la loi de Tracy-Widom vérifie :
The Tracy-Widom distribution is the large dimensional limit of the top eigenvalue of random matrix ensembles. We use the stochastic Airy operator representation to show that as the tail of the Tracy-Widom distribution satisfies
@article{AIHPB_2013__49_4_915_0, author = {Dumaz, Laure and Vir\'ag, B\'alint}, title = {The right tail exponent of the Tracy-Widom $\beta $ distribution}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {49}, year = {2013}, pages = {915-933}, doi = {10.1214/11-AIHP475}, mrnumber = {3127907}, zbl = {1278.60012}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_4_915_0} }
Dumaz, Laure; Virág, Bálint. The right tail exponent of the Tracy-Widom $\beta $ distribution. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 915-933. doi : 10.1214/11-AIHP475. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_4_915_0/
[1] Asymptotics of Tracy-Widom distribution functions. Preprint, 2006. Available at: http://www.cirm.univ-mrs.fr/videos/2006/exposes/28/Baik.pdf.
.[2] Large deviations of the maximal eigenvalue of random matrices. ArXiv e-prints, September 2010. | MR 2869955
, , and .[3] Topological expansion of beta-ensemble model and quantum algebraic geometry in the sectorwise approach. ArXiv e-prints, September 2010. | MR 3165804 | Zbl 1354.81014
, and .[4] Some eigenvalue distribution functions of the Laguerre ensemble. J. Phys. A 29 (23) (1996) 7561-7579. | MR 1425838 | Zbl 0906.60093
and .[5] Matrix models for beta ensembles. J. Math. Phys. 43 (11) (2002) 5830-5847. | MR 1936554 | Zbl 1060.82020
and .[6] Statistical theory of the energy levels of complex systems. II. J. Math. Phys. 3 (1962) 157-165. | MR 143557 | Zbl 0105.41604
.[7] Log-Gases and Random Matrices. London Mathematical Society Monographs Series 34. Princeton Univ. Press, Princeton, NJ, 2010. | MR 2641363 | Zbl 1217.82003
.[8] Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Amer. Math. Soc. 24 (2011) 919-944. | MR 2813333 | Zbl 1239.60005
, and .[9] Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 (1) (1994) 151-174. | MR 1257246 | Zbl 0789.35152
and .[10] On orthogonal and symplectic matrix ensembles. Comm. Math. Phys. 177 (3) (1996) 727-754. | MR 1385083
and .[11] Large gaps between random eigenvalues. Ann. Probab. 38 (3) (2010) 1263-1279. | MR 2674999
and .