Nous commençons par introduire des ensembles de Cantor non-compacts, ainsi que leurs arbres associés. Ils peuvent être considerés comme une généralisation naturelle des nombres -adiques. Nous construisons ensuite une classe de processus de saut sur un ensemble de Cantor non-compact, à l’aide d’un couple de valeurs propres et de mesures. De plus, nous obtenons des expressions concrètes pour les noyaux de la chaleurs associés à ces processus de saut et pour les probabilités de transition correspondantes. Sous certaines hypothèses de régularité sur les valeurs propres et les mesures, nous construisons ensuite des métriques intrinsèques sur cet ensemble de Cantor non-compact afin d’obtenir des estimations fines sur les noyaux de la chaleur et les probabilités de transitions. Finalement, nous montrons que les marches aléatoires sur l’arbre définissant l’ensemble de Cantor non-compact induisent une sous-classe des processus de saut discutés dans la seconde partie de l’article.
First, noncompact Cantor sets along with their defining trees are introduced as a natural generalization of -adic numbers. Secondly we construct a class of jump processes on a noncompact Cantor set from given pairs of eigenvalues and measures. At the same time, we have concrete expressions of the associated jump kernels and transition densities. Then we construct intrinsic metrics on noncompact Cantor set to obtain estimates of transition densities and jump kernels under some regularity conditions on eigenvalues and measures. Finally transient random walks on the defining tree are shown to induce a subclass of jump processes discussed in the second part.
@article{AIHPB_2013__49_4_1090_0, author = {Kigami, Jun}, title = {Transitions on a noncompact Cantor set and random walks on its defining tree}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {49}, year = {2013}, pages = {1090-1129}, doi = {10.1214/12-AIHP496}, mrnumber = {3127915}, zbl = {1286.31006}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_4_1090_0} }
Kigami, Jun. Transitions on a noncompact Cantor set and random walks on its defining tree. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 1090-1129. doi : 10.1214/12-AIHP496. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_4_1090_0/
[1] A random walk on -adics - the generator and its spectrum. Stochastic Process. Appl. 53 (1994) 1-22. | MR 1290704
and .[2] Jump processes on leaves of multibranching trees. J. Math. Phys. 49 (2008) 093503. | MR 2455842
and .[3] Trace formula for -adics. Acta Appl. Math. 71 (2002) 31-48. | MR 1893360
, and .[4] Asymptotics and spectral results for random walks on -adics. Stochastic Process. Appl. 83 (1999) 39-59. | MR 1705599
, and .[5] Dirichlet forms on totally disconnected spaces and bipartite Markov chains. J. Theor. Prob. 12 (1999) 839-857. | MR 1702871
and .[6] On the equivalence of parabolic harnack inequalities and heat kernel estimates. J. Math. Soc. Japan 64 (2012) 1091-1146. | MR 2998918
, and .[7] Stability of parabolic Harnack inequalities on metric measure spaces. J. Math. Soc. Japan 58 (2006) 485-519. | MR 2228569
, and .[8] Markov Processes and Potential Theory. Pure and Applied Mathematics 29. Academic Press, New York, 1968. | MR 264757
and .[9] -adic numbers in physics. Phys. Rep. 233 (1993) 1-66. | MR 1238475
and .[10] Fonctions harmoniques sur un arbre. In Sympos. Math., vol. 9 203-270. Academic Press, London, 1972. | MR 353467
.[11] Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Related Fields 140 (2008) 277-317. | MR 2357678
and .[12] On -adic mathematical physics. -Adic Numbers, Ultrametric Anal. Appl. 1 (2009) 1-17. | MR 2566116
, , and .[13] Local properties of Lévy processes on a totally disconnected group. J. Theoret. Probab. 2 (1989) 209-259. | MR 987578
.[14] Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Math. 19. de Gruyter, Berlin, 1994. | MR 1303354
, and .[15] The heat equation on noncompact Riemannian manifolds. (in Russian). Mat. Sb. 182 (1991) 55-87. English translation in Math. USSR-Sb. 72 (1992) 47-77. | MR 1098839
.[16] Harnack inequalities and sub-Gaussian estimates for random walks. Math. Ann. 324 (2002) 521-556. | MR 1938457
and .[17] Hierarchical structures and assymetric process on -adics and adeles. J. Math. Phys. 35 (1994) 4637-4650. | MR 1290892
and .[18] Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees. Adv. Math. 225 (2010) 2674-2730. | MR 2680180
.[19] Ultametricity for physicists. Rev. Mod. Phys. 58 (1986) 765-788. | MR 854445
, and .[20] A note on Poincaré, Sobolev, and Harnack inequalities. Internat. Math. Res. Notices (1992) 27-38. | MR 1150597
.[21] Random walks on infinite graphs and groups - a surveey on selected topics. Bull. London Math. Soc. 26 (1994) 1-60. | MR 1246471
.[22] Denumerable Markov Chains. European Math. Soc., Zürich, 2009. | MR 2548569
.[23] Parabolic and hyperbolic infinite networks. Hiroshima Math. J. 7 (1977) 135-146. | MR 429377
.[24] Discrete potentials on an infinite network. Mem. Fac. Sci. Shimane Univ. 13 (1979) 31-44. | MR 558311
.