Nous étudions les questions de la définition et de la mesurabilité des fractales aléatoires avec ramification infinie. Nous trouvons sous certaines conditions une formule pour les dimensions de Minkowski supérieure et inférieure. Pour un d'ensemble aléatoire auto-similaire nous obtenons la dimension.
We investigate the definition and measurability questions of random fractals with infinite branching, and find, under certain conditions, a formula for the upper and lower Minkowski dimensions. For the case of a random self-similar set we obtain the packing dimension.
@article{AIHPB_2013__49_4_1080_0, author = {Berlinkov, Artemi}, title = {On random fractals with infinite branching: definition, measurability, dimensions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {49}, year = {2013}, pages = {1080-1089}, doi = {10.1214/12-AIHP502}, mrnumber = {3127914}, zbl = {1300.28003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_4_1080_0} }
Berlinkov, Artemi. On random fractals with infinite branching: definition, measurability, dimensions. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 1080-1089. doi : 10.1214/12-AIHP502. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_4_1080_0/
[1] -variable fractals: Fractals with partial self similarity. Adv. Math. 218 (2008) 2051-2088. | MR 2431670
, and .[2] -variable fractals: dimension results. Forum Math. 24 (2012) 445-470. | MR 2926630
, and .[3] Random conformal snowflakes. Ann. of Math. (2) 172 (2010) 597-615. | MR 2680427
and .[4] Packing measure and dimension of random fractals. J. Theoret. Probab. 15 (2002) 695-713. | MR 1922443
and .[5] Random Fractals. Math. Proc. Cambrige Philos. Soc. 100 (1986) 559-582. | MR 857731
.[6] Fractal Geometry: Mathematical Foundations and Applications, 2nd edition. Wiley, Chichester, UK, 2003. | MR 2118797
.[7] Dimensions and measure for typical random fractals. Preprint, 2011. Available at arXiv:1112.4541.
.[8] The exact Hausdorff dimension in random recursive constructions. Mem. Amer. Math. Soc. 381 (1988). | MR 920961
, and .[9] Geometry of Sets and Measures in Euclidean Spaces. Cambridge Univ. Press, Cambridge, UK, 1995. | MR 1333890
.[10] Measure and dimension functions: measurability and densities. Math. Proc. Cambridge Philos. Soc. 121 (1997) 81-100. | MR 1418362
and .[11] Dimensions and measures in iterated function systems. Proc. London Math. Soc. (3) 73 (1996) 105-154. | MR 1387085
and .[12] Conformal iterated function systems with applications to the geometry of continued fractions. Trans. Amer. Math. Soc. 351 (1999) 4995-5025. | MR 1487636
and .[13] Random recursive constructions: asymtotic geometric and topological properties. Trans. Amer. Math. Soc. 295 (1986) 325-346. | MR 831202
and .[14] Hausdorff and packing dimensions of the images of random fields. Bernoulli 16 (2010) 926-952. | MR 2759163
and .