On random fractals with infinite branching: definition, measurability, dimensions
Berlinkov, Artemi
Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013), p. 1080-1089 / Harvested from Numdam

Nous étudions les questions de la définition et de la mesurabilité des fractales aléatoires avec ramification infinie. Nous trouvons sous certaines conditions une formule pour les dimensions de Minkowski supérieure et inférieure. Pour un d'ensemble aléatoire auto-similaire nous obtenons la dimension.

We investigate the definition and measurability questions of random fractals with infinite branching, and find, under certain conditions, a formula for the upper and lower Minkowski dimensions. For the case of a random self-similar set we obtain the packing dimension.

Publié le : 2013-01-01
DOI : https://doi.org/10.1214/12-AIHP502
Classification:  28A80,  28A78,  60D05,  37F40
@article{AIHPB_2013__49_4_1080_0,
     author = {Berlinkov, Artemi},
     title = {On random fractals with infinite branching: definition, measurability, dimensions},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {49},
     year = {2013},
     pages = {1080-1089},
     doi = {10.1214/12-AIHP502},
     mrnumber = {3127914},
     zbl = {1300.28003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_4_1080_0}
}
Berlinkov, Artemi. On random fractals with infinite branching: definition, measurability, dimensions. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 1080-1089. doi : 10.1214/12-AIHP502. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_4_1080_0/

[1] M. F. Barnsley, J. E. Hutchinson and Ö. Stenflo. V-variable fractals: Fractals with partial self similarity. Adv. Math. 218 (2008) 2051-2088. | MR 2431670

[2] M. F. Barnsley, J. E. Hutchinson and Ö. Stenflo. V-variable fractals: dimension results. Forum Math. 24 (2012) 445-470. | MR 2926630

[3] D. Beliaev and S. Smirnov. Random conformal snowflakes. Ann. of Math. (2) 172 (2010) 597-615. | MR 2680427

[4] A. Berlinkov and R. D. Mauldin. Packing measure and dimension of random fractals. J. Theoret. Probab. 15 (2002) 695-713. | MR 1922443

[5] K. J. Falconer. Random Fractals. Math. Proc. Cambrige Philos. Soc. 100 (1986) 559-582. | MR 857731

[6] K. J. Falconer. Fractal Geometry: Mathematical Foundations and Applications, 2nd edition. Wiley, Chichester, UK, 2003. | MR 2118797

[7] J. M. Fraser. Dimensions and measure for typical random fractals. Preprint, 2011. Available at arXiv:1112.4541.

[8] S. Graf, R. D. Mauldin and S. C. Williams. The exact Hausdorff dimension in random recursive constructions. Mem. Amer. Math. Soc. 381 (1988). | MR 920961

[9] P. Mattila. Geometry of Sets and Measures in Euclidean Spaces. Cambridge Univ. Press, Cambridge, UK, 1995. | MR 1333890

[10] P. Mattila and R. D. Mauldin. Measure and dimension functions: measurability and densities. Math. Proc. Cambridge Philos. Soc. 121 (1997) 81-100. | MR 1418362

[11] R. D. Mauldin and M. Urbanski. Dimensions and measures in iterated function systems. Proc. London Math. Soc. (3) 73 (1996) 105-154. | MR 1387085

[12] R. D. Mauldin and M. Urbanski. Conformal iterated function systems with applications to the geometry of continued fractions. Trans. Amer. Math. Soc. 351 (1999) 4995-5025. | MR 1487636

[13] R. D. Mauldin and S. C. Williams. Random recursive constructions: asymtotic geometric and topological properties. Trans. Amer. Math. Soc. 295 (1986) 325-346. | MR 831202

[14] N.-R. Shieh and Y. Xiao. Hausdorff and packing dimensions of the images of random fields. Bernoulli 16 (2010) 926-952. | MR 2759163