Nous considérons l’équation de Schrödinger linéaire avec les conditions aux limites périodiques, perturbée par une force aléatoire et amortie par un terme quasi linéaire: La force est un processus aléatoire blanc en temps et lisse en ; le potentiel est typique. Nous étudions le comportement asymptotique des solutions sur de longs intervalles de temps , quand , et le comportement des solutions quand et . Nous démontrons qu’on peut décrire ces deux comportements asymptotiques en termes des solutions du système d'équations effectives pour (). Ce dernier est une équation de la chaleur avec un terme quasi linéaire non local et une force aléatoire lisse additive, qui est écrite dans l’espace de Fourier. Les équations ne dépendent pas de la partie hamiltonienne de la perturbation (mais elles dépendent de la partie dissipative ). Si est un entier, on peut écrire ces équations explicitement.
We consider the linear Schrödinger equation under periodic boundary conditions, driven by a random force and damped by a quasilinear damping: The force is white in time and smooth in ; the potential is typical. We are concerned with the limiting, as , behaviour of solutions on long time-intervals , and with behaviour of these solutions under the double limit and . We show that these two limiting behaviours may be described in terms of solutions for the system of effective equations for () which is a well posed semilinear stochastic heat equation with a non-local nonlinearity and a smooth additive noise, written in Fourier coefficients. The effective equations do not depend on the Hamiltonian part of the perturbation (but depend on the dissipative part ). If is an integer, they may be written explicitly.
@article{AIHPB_2013__49_4_1033_0, author = {Kuksin, Sergei B.}, title = {Weakly nonlinear stochastic CGL equations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {49}, year = {2013}, pages = {1033-1056}, doi = {10.1214/11-AIHP482}, mrnumber = {3127912}, zbl = {1280.35144}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_4_1033_0} }
Kuksin, Sergei B. Weakly nonlinear stochastic CGL equations. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 1033-1056. doi : 10.1214/11-AIHP482. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_4_1033_0/
[1] On finite-dimensional projections of distributions for solutions of randomly forced PDEs. Ann. Inst. Henri Poincarè Probab. Stat. 43 (2007) 399-415. | MR 2329509
, , and .[2] Mathematical Aspects of Classical and Celestial Mechanics, 3rd edition. Springer, Berlin, 2006. | MR 2269239
, and .[3] Ergodicity for the weakly damped stochastic non-linear Shrödinger equations. J. Evol. Equ. 5 (2005) 317-356. | MR 2174876
and .[4] Random Perturbations of Dynamical Systems, 2nd edition. Springer, New York, 1998. | MR 1652127
and .[5] Exponential mixing properties of stochastic PDE's through asymptotic coupling. Probab. Theory Related Fields 124 (2002) 345-380. | MR 1939651
.[6] Strong nonresonance of Schrödinger operators and an averaging theorem. Phys. D 86 (1995) 349-362. | MR 1349486
and .[7] Brownian Motion and Stochastic Calculus, 2nd edition. Springer, Berlin, 1991. | MR 1121940
and .[8] On the avaraging principle for Ito stochastic differential equations. Kybernetika 4 (1968) 260-279 (in Russian).
.[9] Damped-driven KdV and effective equations for long-time behaviour of its solutions. Geom. Funct. Anal. 20 (2010) 1431-1463. | MR 2738999
.[10] Khasminskii-Whitham averaging for randomly perturbed KdV equation. J. Math. Pures Appl. 89 (2008) 400-428. | MR 2401144
and .[11] Stochastic dissipative PDEs and Gibbs measures. Comm. Math. Phys. 213 (2000) 291-330. | MR 1785459
and .[12] Randomly forced CGL equation: Stationary measures and the inviscid limit. J. Phys. A 37 (2004) 1-18. | MR 2039838
and .[13] Mathematics of two-dimensional turbulence. Preprint, 2012. Available at www.math.polytechnique.fr/~kuksin/books.html.
and .[14] Multiphase Averaging for Classical Systems. Springer, New York-Berlin-Heidelberg, 1988. | MR 959890
and .[15] Wave Turbulence. Springer, Berlin, 2011. | MR 3014432
.[16] Ergodicity for the stochastic complex Ginzburg-Landau equations. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 417-454. | MR 2242955
.[17] Inverse Spectral Theory. Academic Press, Boston, 1987. | MR 894477
and .[18] Ergodicity for a class of Markov processes and applications to randomly forced PDE's. II. Discrete Contin. Dyn. Syst. 6 (2006) 911-926. | MR 2223915
.[19] Existence et unicité de diffusion à valeurs dans un espace de Hilbert. Ann. Inst. Henri Poincaré Probab. Stat. 10 (1974) 55-88. | Numdam | MR 356257
.