On introduit la mesure -finie , unifiant les pénalisations selon le supremum pour un processus de Lévy stable. Dans la construction de on utilise les fonctions co-invariantes et co-harmoniques de Silverstein pour les processus de Lévy, et les processus -transformés par rapport à ces fonctions selon l’approche de Chaumont.
The -finite measure which unifies supremum penalisations for a stable Lévy process is introduced. Silverstein’s coinvariant and coharmonic functions for Lévy processes and Chaumont’s -transform processes with respect to these functions are utilized for the construction of .
@article{AIHPB_2013__49_4_1014_0, author = {Yano, Yuko}, title = {A remarkable $\sigma $-finite measure unifying supremum penalisations for a stable L\'evy process}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {49}, year = {2013}, pages = {1014-1032}, doi = {10.1214/12-AIHP497}, mrnumber = {3127911}, zbl = {1282.60051}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_4_1014_0} }
Yano, Yuko. A remarkable $\sigma $-finite measure unifying supremum penalisations for a stable Lévy process. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 1014-1032. doi : 10.1214/12-AIHP497. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_4_1014_0/
[1] Une solution simple au problème de Skorokhod. In Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78) 90-115. Lecture Notes in Math. 721. Springer, Berlin, 1979. | Numdam | MR 544782
and .[2] Le problème de Skorokhod: compléments à “Une solution simple au problème de Skorokhod.” In Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78) 625-633. Lecture Notes in Math. 721. Springer, Berlin, 1979. | Numdam | MR 544832
and .[3] Splitting at the infimum and excursions in half-lines for random walks and Lévy processes. Stochastic Process. Appl. 47 (1993) 17-35. | MR 1232850
.[4] Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. | MR 1406564
.[5] Maxima of sums of random variables and suprema of stable processes. Z. Wahrsch. Verw. Gebiete 26 (1973) 273-296. | MR 415780
.[6] Conditionings and path decompositions for Lévy processes. Stochastic Process. Appl. 64 (1996) 39-54. | MR 1419491
.[7] Excursion normalisée, méandre et pont pour des processus stables. Bull. Sci. Math. 121 (1997) 377-403. | MR 1465814
.[8] On the law of the supremum of Lévy processes. Ann. Probab. 41 (2013) 1191-1217. | MR 3098676
.[9] On Lévy processes conditioned to stay positive. Electron. J. Probab. 10 (2005) 948-961 (electronic); corrections in 13 (2008) 1-4 (electronic).
and .[10] Fluctuation Theory for Lévy Processes. Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, July 6-23, 2005. Lecture Notes in Math. 1897. Springer, Berlin, 2007.
.[11] Brownian Motion and Stochastic Calculus, 2nd edition. Springer, New York, 1991. | MR 1121940
and .[12] Introductory Lectures on Fluctuations of Lévy Processes with Applications. Universitext. Springer, Berlin, 2006. | MR 2250061
.[13] Stable processes: Sample function growth at a local minimum. Z. Wahrsch. Verw. Gebiete 49 (1979) 177-210. | MR 543993
and .[14] On some properties of a universal sigma-finite measure associated with a remarkable class of submartingales. Publ. Res. Inst. Math. Sci. 47 (2011) 911-936. | MR 2880381
and .[15] A Global View of Brownian Penalisations. MSJ Memoirs 19. Mathematical Society of Japan, Tokyo, 2009. | MR 2528440
, and .[16] The Skorokhod embedding problem and its offsprings. Probability Surveys 1 (2004) 321-390. | MR 2068476
.[17] Decomposition at the maximum for excursions and bridges of one-dimensional diffusions. In Itô's Stochastic Calculus and Probability Theory 293-310. Springer, Tokyo, 1996. | MR 1439532
and .[18] Continuous Martingales and Brownian Motion, 3rd edition. Springer, Berlin, 1999. | MR 1725357
and .[19] Limiting laws associated with Brownian motion perturbed by normalized exponential weights, I. Studia Sci. Math. Hungar. 43 (2006) 171-246. | MR 2229621
, and .[20] Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time, II. Studia Sci. Math. Hungar. 43 (2006) 295-360. | MR 2253307
, and .[21] Some penalisations of the Wiener measure. Jpn. J. Math. 1 (2006) 263-290. | MR 2261065
, and .[22] Penalising Brownian Paths. Lecture Notes in Math. 1969. Springer, Berlin, 2009. | MR 2504013
and .[23] Lévy Processes and Infinitely Divisible Distributions. Translated from the 1990 Japanese original, Revised by the author. Cambridge Studies in Advanced Mathematics 68. Cambridge University Press, Cambridge, 1999. | MR 1739520
.[24] Classification of coharmonic and coinvariant functions for Lévy processes. Ann. Probab. 8 (1980) 539-575. | MR 573292
.[25] Two kinds of conditionings for stable Lévy processes. In Proceedings of the 1st MSJ-SI, “Probabilistic Approach to Geometry,” 493-503. Adv. Stud. Pure Math. 57. Math. Soc. Japan, Tokyo. | MR 2648275
.[26] Excursions away from a regular point for one-dimensional symmetric Lévy processes without Gaussian part. Potential Anal. 32 (2010) 305-341. | MR 2603019
.[27] Penalising symmetric stable Lévy paths. J. Math. Soc. Japan 61 (2009) 757-798. | MR 2552915
, and .[28] Penalisation of a stable Lévy process involving its one-sided supremum. Ann. Inst. H. Poincaré Probab. Statist. 46 (2010) 1042-1054. | Numdam | MR 2744885
, and .[29] One-Dimensional Stable Distributions. Translations of Mathematical Monographs 65. Amer. Math. Soc., Providence, RI, 1986. | MR 854867
.