Soit la somme partielle itérée, c’est à dire , où . Pour des variables aléatoires i.i.d. intégrables et de moyenne nulle, nous montrons que les probabilités de persistance satisfont avec (et dès que est symétrique). En outre, l’inégalité inverse est vraie quand pour un ou si quand . Pour ces variables, on a donc si admet un moment d’ordre 2. Par contre nous montrons que pour tout , il existe des variables intégrables de moyenne nulle pour lesquelles décroît comme .
Let denote the iterated partial sums. That is, , where . Assuming are integrable, zero-mean, i.i.d. random variables, we show that the persistence probabilities with (and whenever is symmetric). The converse inequality holds whenever the non-zero is bounded or when it has only finite third moment and in addition is squared integrable. Furthermore, for any non-degenerate squared integrable, i.i.d., zero-mean . In contrast, we show that for any there exist integrable, zero-mean random variables for which the rate of decay of is .
@article{AIHPB_2013__49_3_873_0, author = {Dembo, Amir and Ding, Jian and Gao, Fuchang}, title = {Persistence of iterated partial sums}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {49}, year = {2013}, pages = {873-884}, doi = {10.1214/11-AIHP452}, mrnumber = {3112437}, zbl = {1274.60144}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_3_873_0} }
Dembo, Amir; Ding, Jian; Gao, Fuchang. Persistence of iterated partial sums. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 873-884. doi : 10.1214/11-AIHP452. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_3_873_0/
[1] Survival probabilities of weighted random walks. ALEA Lat. Am. J. Probab. Math. Stat. 8 (2011) 235-258. | MR 2818568 | Zbl 1276.60057
and .[2] Universality of the asymptotics of the one-sided exit problem for integrated processes. Ann. Inst. Henri Poincaré Probab. Stat. 49 (2013) 236-251. | Numdam | MR 3060155 | Zbl pre06146741
and .[3] Pinning and wetting transition for -dimensional fields with Laplacian interaction. Ann. Probab. 36 (2008) 2388-2433. | MR 2478687 | Zbl 1179.60066
and .[4] Random polynomials having few or no real zeros. J. Amer. Math. Soc. 15 (2002) 857-892. | MR 1915821 | Zbl 1002.60045
, , and .[5] The lower tail problem for the area of a symmetric stable process. Unpublished manuscript, 2007.
, and .[6] An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edition. Wiley, New York, 1971. | MR 270403 | Zbl 0138.10207
.[7] Recent developments on lower tail probabilities for Gaussian processes. Cosmos 1 (2005) 95-106. | MR 2329259
and .[8] A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ. 2 (1963) 227-235. | MR 156389 | Zbl 0119.34701
[9] Comparison of sums of independent identically distributed random vectors. Probab. Math. Statist. 14 (1993) 281-285. | MR 1321767 | Zbl 0827.60005
.[10] The lower tail problem for homogeneous functionals of stable processes with no negative jumps. ALEA Lat. Am. J. Probab. Math. Stat. 3 (2007) 165-179. | MR 2349807 | Zbl 1145.60027
.[11] Distribution of some functionals of the integral of a random walk. Theoret. Math. Phys. 90 (1992) 219-241. | MR 1182301 | Zbl 0810.60063
.[12] Clustering in a stochastic model of one-dimensional gas. Ann. Appl. Probab. 18 (2008) 1026-1058. | MR 2418237 | Zbl 1141.60068
.[13] On the probability that integrated random walks stay positive. Stochastic Process. Appl. 120 (2010) 1178-1193. | MR 2639743 | Zbl 1202.60070
.